#### **Business Statistic**

Week 13 Chi-Square Test

## Learning Objectives

#### In this chapter, you learn:

How and when to use the chi-square test for contingency tables

# $\chi^2$ TEST FOR THE DIFFERENCE BETWEEN TWO PROPORTIONS

## **Contingency Tables**

#### **Contingency Tables**

- Useful in situations comparing multiple population proportions
- Used to classify sample observations according to two or more characteristics
- Also called a cross-classification table.

## Contingency Table Example

Left-Handed vs. Gender

Dominant Hand: Left vs. Right

Gender: Male vs. Female

- 2 categories for each variable, so this is called a 2 x 2 table
- Suppose we examine a sample of 300 children

## Contingency Table Example

Sample results organized in a contingency table:

|                                     |   |        | Hand Pre | eference |     |
|-------------------------------------|---|--------|----------|----------|-----|
| sample size = $n = 300$ :           |   | Gender | Left     | Right    |     |
| 120 Females, 12 were<br>left handed |   | Female | 12       | 108      | 120 |
| 180 Males, 24 were<br>left handed   | / | Male   | 24       | 156      | 180 |
|                                     |   |        | 36       | 264      | 300 |

## $\chi^2$ Test for the Difference Between Two Proportions

| $H_0: \pi_1 = \pi_2$    | (Proportion of females who are left     |
|-------------------------|-----------------------------------------|
|                         | handed is equal to the proportion of    |
|                         | males who are left handed)              |
| $H_1: \pi_1 \neq \pi_2$ | (The two proportions are not the same – |
|                         | hand preference is not independent      |
|                         | of gender)                              |

- If H<sub>0</sub> is true, then the proportion of left-handed females should be the same as the proportion of left-handed males
- The two proportions above should be the same as the proportion of lefthanded people overall

#### The Chi-Square Test Statistic

The Chi-square test statistic is:

$$\chi^2_{STAT} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

• where:

 $f_o = observed frequency in a particular cell$ 

 $f_e$  = expected frequency in a particular cell if  $H_0$  is true

#### $\chi^2_{STAT}$ for the 2 x 2 case has 1 degree of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 5)

#### **Decision Rule**

The  $\chi^2_{STAT}$  test statistic approximately follows a chisquared distribution with one degree of freedom



#### Computing the Average Proportion

The average proportion is:

$$\overline{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{X}{n}$$



## **Finding Expected Frequencies**

- To obtain the expected frequency for left handed females, multiply the average proportion left handed (p) by the total\_ number of females
- To obtain the expected frequency for left handed males, multiply the average proportion left handed (p) by the total number of males

#### If the two proportions are equal, then

```
P(Left Handed | Female) = P(Left Handed | Male) = .12
```

i.e., we would expect

(.12)(120) = 14.4 females to be left handed (.12)(180) = 21.6 males to be left handed

#### **Observed vs. Expected Frequencies**

|        | Hand Pr           |                    |     |
|--------|-------------------|--------------------|-----|
| Gender | Left              | Right              |     |
| Female | Observed = 12     | Observed = 108     | 120 |
| remale | Expected = $14.4$ | Expected = $105.6$ | 120 |
| Mala   | Observed = 24     | Observed = 156     | 100 |
| Male   | Expected $= 21.6$ | Expected = $158.4$ | 180 |
|        | 36                | 264                | 300 |

#### The Chi-Square Test Statistic

|         | Hand Pr           |                    |     |
|---------|-------------------|--------------------|-----|
| Gender  | Left              | Right              |     |
| Female  | Observed = 12     | Observed = 108     | 120 |
| I emale | Expected = $14.4$ | Expected = $105.6$ | 120 |
| Male    | Observed = 24     | Observed = 156     | 180 |
| IVIAIE  | Expected = $21.6$ | Expected = $158.4$ | 160 |
|         | 36                | 264                | 300 |

The test statistic is:

$$\chi^{2}_{STAT} = \sum_{\text{all cells}} \frac{(\mathbf{f}_{o} - \mathbf{f}_{e})^{2}}{\mathbf{f}_{e}}$$
$$= \frac{(12 - 14.4)^{2}}{14.4} + \frac{(108 - 105.6)^{2}}{105.6} + \frac{(24 - 21.6)^{2}}{21.6} + \frac{(156 - 158.4)^{2}}{158.4} = 0.7576$$

#### **Decision Rule**



# $\chi^2$ TEST FOR DIFFERENCES AMONG MORE THAN TWO PROPORTIONS

## $\chi^2$ Test for Differences Among More Than Two Proportions

Extend the  $\chi^2$  test to the case with more than two independent populations:

 $H_0: \pi_1 = \pi_2 = \dots = \pi_c$  $H_1: Not all of the <math>\pi_j$  are equal (j = 1, 2, ..., c)

#### The Chi-Square Test Statistic

The Chi-square test statistic is:

$$\chi^2_{STAT} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

• Where:

 $f_o =$  observed frequency in a particular cell of the 2 x c table

 $f_e$  = expected frequency in a particular cell if  $H_0$  is true

#### $\chi^2_{STAT}$ for the 2 x c case has (2 - 1)(c - 1) = c - 1 degrees of freedom

(Assumed: each cell in the contingency table has expected frequency of at least 1)

#### Computing the Overall Proportion

The overall proportion is:

$$\overline{p} = \frac{X_1 + X_2 + \Lambda + X_c}{n_1 + n_2 + \Lambda + n_c} = \frac{X}{n}$$

 Expected cell frequencies for the c categories are calculated as in the 2 x 2 case, and the decision rule is the same:

Decision Rule: If  $\chi^2_{STAT} > \chi^2_{\alpha}$  reject H<sub>0</sub>, otherwise, do not reject H<sub>0</sub> Where  $\chi^2_{\alpha}$  is from the chisquared distribution with c - 1 degrees of freedom

## Example of $\chi^2$ Test for Differences Among More Than Two Proportions

A University is thinking of switching to a trimester academic calendar. A random sample of 100 administrators, 50 students, and 50 faculty members were surveyed

| Opinion | Administrators | Students | Faculty |
|---------|----------------|----------|---------|
| Favor   | 63             | 20       | 37      |
| Oppose  | 37             | 30       | 13      |
| Totals  | 100            | 50       | 50      |



Using a 1% level of significance, which groups have a different attitude?

#### **Chi-Square Test Results**

$$H_0: \pi_1 = \pi_2 = \pi_3$$

 $H_1$ : Not all of the  $\pi_i$  are equal (j = 1, 2, 3)





#### The Marascuilo Procedure

- Used when the null hypothesis of equal proportions is rejected
- Enables you to make comparisons between all pairs
- Start with the observed differences, p<sub>j</sub> p<sub>j'</sub>, for all pairs (for j ≠ j') then compare the absolute difference to a calculated critical range

#### The Marascuilo Procedure

• Critical Range for the Marascuilo Procedure:

Critical range = 
$$\sqrt{\chi_{\alpha}^2} \sqrt{\frac{p_j(1-p_j)}{n_j} + \frac{p_{j'}(1-p_{j'})}{n_{j'}}}$$

- (Note: the critical range is different for each pairwise comparison)
- A particular pair of proportions is significantly different if

$$|p_j - p_{j'}| > critical range for j and j'$$

#### Marascuilo Procedure Example

A University is thinking of switching to a trimester academic calendar. A random sample of 100 administrators, 50 students, and 50 faculty members were surveyed

| Opinion | Administrators | Students | Faculty |
|---------|----------------|----------|---------|
| Favor   | 63             | 20       | 37      |
| Oppose  | 37             | 30       | 13      |
| Totals  | 100            | 50       | 50      |



Using a 1% level of significance, which groups have a different attitude?

#### **Chi-Square Test Results**

$$H_0: \pi_1 = \pi_2 = \pi_3$$

 $H_1$ : Not all of the  $\pi_i$  are equal (j = 1, 2, 3)





#### Marascuilo Procedure: Solution

Calculations In Excel:

|        | compare        |        |            |            |               |         |                         |  |
|--------|----------------|--------|------------|------------|---------------|---------|-------------------------|--|
| Marasc | uilo Procedure | e      |            |            |               |         |                         |  |
|        |                |        |            |            |               |         |                         |  |
|        | Sample         | Sample |            | Absolute   | Std. Error    | Critica |                         |  |
| Group  | Proportion     | Size   | Comparison | Difference | of Difference | Range   | Results                 |  |
| 1      | 0.63           | 100    | 1 to 2     | 0.23       | 0.084445249   | 0.2563  | Means are not different |  |
| 2      | 0.4            | 50     | 1 to 3     | 0.11       | 0.078606615   | 0.2386  | Means are not different |  |
| 3      | 0.74           | 50     | 2 to 3     | 0.34       | 0.092994624   | 0.2822  | Means are different     |  |
|        |                |        |            |            |               |         |                         |  |

At 1% level of significance, there is evidence of a difference in attitude between students and faculty

Minitab does not do the Marascuilo procedure

## $\chi^2$ TEST OF INDEPENDENCE

## $\chi^2$ Test of Independence

Similar to the  $\chi^2$  test for equality of more than two proportions, but extends the concept to contingency tables with r rows and c columns

H<sub>0</sub>: The two categorical variables are independent (i.e., there is no relationship between them)
H<sub>1</sub>: The two categorical variables are dependent (i.e., there is a relationship between them)

## $\chi^2$ Test of Independence

The Chi-square test statistic is:

$$\chi^2_{STAT} = \sum_{all \text{ cells}} \frac{(f_o - f_e)^2}{f_e}$$

where:

 $f_o$  = observed frequency in a particular cell of the rxc table

 $f_e$  = expected frequency in a particular cell if  $H_0$  is true

 $\chi^2_{STAT}$  for the r x c case has (r-1)(c-1) degrees of freedom (Assumed: each cell in the contingency table has expected frequency of at least 1)

#### **Expected Cell Frequencies**

• Expected cell frequencies:



Where:

row total = sum of all frequencies in the row

column total = sum of all frequencies in the column

n = overall sample size

#### **Decision Rule**

• The decision rule is

If 
$$\chi^2_{STAT} > \chi^2_{\alpha}$$
, reject H<sub>0</sub>,

otherwise, do not reject H<sub>0</sub>

Where  $\chi^2_{\alpha}$  is from the chi-squared distribution with (r-1)(c-1) degrees of freedom

#### Example

• The meal plan selected by 200 students is shown below:

| Class    | Numbe   |         |      |       |
|----------|---------|---------|------|-------|
| Standing | 20/week | 10/week | none | Total |
| Fresh.   | 24      | 32      | 14   | 70    |
| Soph.    | 22      | 26      | 12   | 60    |
| Junior   | 10      | 14      | 6    | 30    |
| Senior   | 14      | 16      | 10   | 40    |
| Total    | 70      | 88      | 42   | 200   |

#### Example

• The hypothesis to be tested is:

H<sub>0</sub>: Meal plan and class standing are independent (i.e., there is no relationship between them)
H<sub>1</sub>: Meal plan and class standing are dependent (i.e., there is a relationship between them)

#### Example: Expected Cell Frequencies

Observed:

| Class                             |       | nber of m<br>per weel |      |        | Expected cell frequencies if |       |          | ncies if F | ┨ <sub>o</sub> is |
|-----------------------------------|-------|-----------------------|------|--------|------------------------------|-------|----------|------------|-------------------|
| Standing                          | 20/wk | 10/wk                 | none | Total  |                              |       |          |            | Ū                 |
| Fresh.                            | 24    | 32                    | 14   | 70     |                              |       |          |            |                   |
| Soph.                             | 22    | 26                    | 12   | 60     | 60 Number of meals           |       |          |            |                   |
| Junior                            | 10    | 14                    | 6    | 30     | Class                        |       | per week | (          |                   |
| Senior                            | 14    | 16                    | 10   | 40     | Standing                     | 20/wk | 10/wk    | none       | Total             |
| Total                             | 70    | 88                    | 42   | 200    | Fresh.                       | 24.5  | 30.8     | 14.7       | 70                |
| Example for one cell:             |       |                       |      | Soph.  | 21.0                         | 26.4  | 12.6     | 60         |                   |
| , row total $\times$ column total |       |                       |      | Junior | (10.5)                       | 13.2  | 6.3      | 30         |                   |

Senior

Total

17.6

88

14.0

70

40

200

8.4

42



#### Example: The Test Statistic

• The test statistic value is:

$$\chi^{2}_{STAT} = \sum_{all \text{ cells}} \frac{(f_{o} - f_{e})^{2}}{f_{e}}$$
$$= \frac{(24 - 24.5)^{2}}{24.5} + \frac{(32 - 30.8)^{2}}{30.8} + \Lambda + \frac{(10 - 8.4)^{2}}{8.4} = 0.709$$

 $\chi^2_{0.05} = 12.592$  from the chi-squared distribution with (4-1)(3-1) = 6 degrees of freedom

#### Example: Decision and Interpretation



#### EXERCISE

#### 12.14

How do Americans feel about online ads tailored to their individual interests? A survey of 1,000 adult Internet users found that 55% of the 18 to 24 year olds, 59% of 25 to 34 year olds, 66% of 35 to 49 year olds, 77% of 50 to 64 year olds, and 82% of 65 to 89 year olds opposed such ads. Suppose that the survey was based on 200 respondents in each of five age groups: 18 to 24, 25 to 34, 35 to 49, 50 to 64, and 65 to 89. At the 0.05 level of significance, is there evidence of a difference among the age groups in the opposition to ads on web pages tailored to their interests?

## 12.16 (Cont'd)

More shoppers do the majority of their grocery shopping on Saturday than any other day of the week. However, is there a difference in the various age groups in the proportion of people who do the majority of their grocery shopping on Saturday? A study showed the results for the different age groups. The data were reported as percentages, and no sample sizes were given:

## 12.16

|                              |          | USIA  |         |
|------------------------------|----------|-------|---------|
| MAJOR SHOPPING<br>DAY        | Under 35 | 35–54 | Over 54 |
| Saturday                     | 24%      | 28%   | 12%     |
| A day other than<br>Saturday | 76%      | 72%   | 88%     |

Assume that 200 shoppers for each age group were surveyed. Is there evidence of a significant difference among the age groups with respect to major grocery shopping day? (Use  $\alpha$ = 0.05)

### 12.18

Is there a generation gap in music? A study reported that 45% of 16 to 29 year olds, 42% of 30 to 49 year olds, and 33% of 50 to 64 year olds often listened to rock music. Suppose that the study was based on a sample of 200 respondents in each group. Is there evidence of a significant difference among the age groups with respect to the proportion who often listened to rock music? (Use  $\alpha = 0.05$ )

## 12.24 (cont'd)

A large corporation is interested in determining whether a relationship exists between the commuting time of its employees and the level of stress-related problems observed on the job. A study of 116 workers reveals the following:

## 12.24 (cont'd)

| Commuting Time | Stress Level |          |     |       |  |
|----------------|--------------|----------|-----|-------|--|
|                | High         | Moderate | Low | Total |  |
| Under 15 Min.  | 9            | 5        | 18  | 32    |  |
| 14-45 Min.     | 17           | 8        | 28  | 53    |  |
| Over 45 Min.   | 18           | 6        | 7   | 31    |  |
| Total          | 44           | 19       | 53  | 116   |  |

#### 12.24

At the 0.01 level of significance, is there evidence of a significant relationship between commuting time and stress level?

#### **THANK YOU**