
Business Statistic 

Week 14 

Linear Regression 



Learning Objectives 

In this chapter, you learn:  

• How to use regression analysis to predict the value of a 
dependent variable based on an independent variable 

• The meaning of the regression coefficients b0 and b1 

• How to evaluate the assumptions of regression analysis and 
know what to do if the assumptions are violated 

• To make inferences about the slope and correlation 
coefficient 

• To estimate mean values and predict individual values 



Correlation vs. Regression 

• A scatter plot can be used to show the 
relationship between two variables 

• Correlation analysis is used to measure the 
strength of the association (linear 
relationship) between two variables 

– Correlation is only concerned with strength of 
the relationship  

– No causal effect is implied with correlation 

– Scatter plots were first presented in Ch. 2 

– Correlation was first presented in Ch. 3 

 



Introduction to  
Regression Analysis 

• Regression analysis is used to: 

– Predict the value of a dependent variable based on 
the value of at least one independent variable 

– Explain the impact of changes in an independent 
variable on the dependent variable 

Dependent variable:    the variable we wish to 
              predict or explain 

Independent variable:  the variable used to predict 
      or explain the dependent 
       variable 



Simple Linear Regression Model 

• Only one independent variable, X 

• Relationship between  X  and  Y  is described 
by a linear function 

• Changes in Y are assumed to be related to 
changes in X 



Types of Relationships 
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Types of Relationships 
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Types of Relationships 
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Random Error for this Xi 
value 

Y 

X 

Observed Value 
of Y for Xi 

Predicted Value 
of Y for Xi  
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Xi 

Slope = β1 

Intercept = β0   

εi 

Simple Linear Regression Model 
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The simple linear regression equation provides an estimate of the 
population regression line 

Simple Linear Regression 
Equation (Prediction Line) 

Estimate of the 
regression  
intercept 

Estimate of the 
regression slope 
 

Estimated  (or 
predicted) Y 
value for 
observation i 

Value of X for 
observation i 



The Least Squares Method 

b0  and  b1  are obtained by finding the values of  

that minimize the sum of the squared 

differences between Y and     : 
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Linear Trend Model 
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• b0 is the estimated mean value of Y when 

the value of X is zero 
 

• b1 is the estimated change in the mean 

value of Y as a result of a one-unit 

increase in X 

Interpretation of the  
Slope and the Intercept 



Simple Linear Regression 
Example 

• A real estate agent wishes to examine the relationship 
between the selling price of a home and its size 
(measured in square feet) 
 

• A random sample of 10 houses is selected 

– Dependent variable (Y) = house price in $1000s 

– Independent variable (X) = square feet 



Simple Linear Regression 
Example:  Data 

House Price in $1000s 

(Y) 

Square Feet  

(X) 

245 1400 

312 1600 

279 1700 

308 1875 

199 1100 

219 1550 

405 2350 

324 2450 

319 1425 

255 1700 
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Square Feet

Simple Linear Regression Example:  Scatter Plot 

House price model:  Scatter Plot 
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Simple Linear Regression Example:  Graphical 
Representation 

House price model:  Scatter Plot and Prediction Line 

feet) (square 0.10977 98.24833 price house 

Slope  
= 0.10977 

Intercept  
= 98.248   



Simple Linear Regression Example:  
Interpretation of bo 

• b0 is the estimated mean value of Y when the 

value of X is zero (if X = 0 is in the range of 

observed X values) 

• Because a house cannot have a square 

footage of 0, b0 has no practical application 

feet) (square 0.10977 98.24833 price house 



Simple Linear Regression Example:  
Interpreting b1 

• b1 estimates the change in the mean value of 

Y as a result of a one-unit increase in X 

– Here, b1 = 0.10977 tells us that the mean value of 

a house increases by .10977($1000) = $109.77, 

on average, for each additional one square foot 

of size 

feet) (square 0.10977 98.24833 price house 



317.78

00)0.10977(20  98.24833

(sq.ft.) 0.10977 98.24833 price house







Predict the price for a house 
with 2000 square feet: 

The predicted price for a house with 2000 
square feet is 317.78($1,000s) = $317,780 

Simple Linear Regression 
Example:  Making Predictions 
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Simple Linear Regression Example:  
Making Predictions 

• When using a regression model for prediction, 
only predict within the relevant range of data 

Relevant range for 
interpolation 

Do not try to 
extrapolate beyond 

the range of 
observed X’s 



Measures of Variation 

• Total variation is made up of two parts: 

SSE       SSR       SST 
Total Sum of 

Squares 
Regression Sum of 

Squares 
Error Sum of 

Squares 
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where: 

     = Mean value of the dependent variable 

 Yi = Observed value of the dependent variable 

     = Predicted value of Y for the given Xi value 

Y



• SST = total sum of squares     (Total Variation) 

– Measures the variation of the Yi values around 
their mean Y 

• SSR = regression sum of squares  (Explained Variation) 

– Variation attributable to the relationship 
between X and Y 

• SSE = error sum of squares   (Unexplained Variation) 

– Variation in Y attributable to factors other than X 

Measures of Variation 
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Measures of Variation 



• The coefficient of determination is the portion of 
the total variation in the dependent variable that is 
explained by variation in the independent variable 

• The coefficient of determination is also called r-
squared and is denoted as r2 

Coefficient of Determination, r2 

1r0 2 note: 

squares of sum total

 squares of sum regression2 
SST

SSR
r



r2 = 1 

Examples of Approximate  
r2  Values 

Y 

X 

Y 

X 

r2 = 1 

r2 = 1 

Perfect linear relationship between X and Y:   
 
100% of the variation in Y is explained by 
variation in X 



Examples of Approximate  
r2  Values 

Y 

X 

Y 

X 

0 < r2 < 1 

Weaker linear relationships between X 
and Y:   
 
Some but not all of the variation in Y is 
explained by variation in X 



Examples of Approximate  
r2  Values 

r2 = 0 

No linear relationship between X and Y:   
 
The value of Y does not depend on X.  
(None of the variation in Y is explained by 
variation in X) 

Y 

X 
r2 = 0 



Standard Error of Estimate 

• The standard deviation of the variation of 
observations around the regression line is 
estimated by 

2

)ˆ(

2

1

2













n

YY

n

SSE
S

n

i

ii

YX

Where 
 SSE  = error sum of squares 
       n = sample size 



Comparing Standard Errors 

Y Y 

X X 
YX

S small
YX

S large

SYX is a measure of the variation of observed Y values from the 
regression line 

The magnitude of SYX should always be judged relative to the size of 
the Y values in the sample data 

i.e., SYX = $41.33K is moderately small relative to house prices in the 
$200K - $400K range 



Assumptions of Regression 
L.I.N.E 

• Linearity 

– The relationship between X and Y is linear 

• Independence of Errors 

– Error values are statistically independent 

• Normality of Error 

– Error values are normally distributed for any given value 
of X 

• Equal Variance (also called homoscedasticity) 

– The probability distribution of the errors has constant 
variance 



Residual Analysis 

• The residual for observation i, ei, is the difference between 
its observed and predicted value 

• Check the assumptions of regression by examining the 
residuals 

– Examine for linearity assumption 

– Evaluate independence assumption  

– Evaluate normal distribution assumption  

– Examine for constant variance for all levels of X (homoscedasticity)   

• Graphical Analysis of Residuals 

– Can plot residuals vs. X 

iii ŶYe 



Residual Analysis for Linearity 

Not Linear Linear 
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Residual Analysis for 
Independence 

Not Independent 

Independent 
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Checking for Normality 

• Examine the Stem-and-Leaf Display of the 
Residuals 

• Examine the Boxplot of the Residuals 

• Examine the Histogram of the Residuals 

• Construct a Normal Probability Plot of the 
Residuals 



Residual Analysis for Normality 

Percent 

Residual 

When using a normal probability plot, normal errors will approximately 
display in a straight line 

-3      -2      -1      0      1      2       3 

0 

100 



Residual Analysis for  
Equal Variance  

Non-constant variance 
 

Constant variance 
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• Used when data are collected over time 
to detect if autocorrelation is present 

• Autocorrelation exists if residuals in one 
time period are related to residuals in 
another period 

Measuring Autocorrelation: 
The Durbin-Watson Statistic 



Autocorrelation 

• Autocorrelation is correlation of the errors 
(residuals) over time 

 

 Violates the regression assumption that residuals 
are random and independent 

 

Time (t)  Residual Plot
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 Here, residuals show a 
cyclic pattern (not 
random.)  Cyclical 
patterns are a sign of 
positive autocorrelation 



The Durbin-Watson Statistic 
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 The possible range is 0 ≤ D ≤ 4 

 D should be close to 2 if H0 is true 

 D less than 2 may signal positive 
autocorrelation, D greater than 2 may 
signal negative autocorrelation 

• The Durbin-Watson statistic is used to test for 
autocorrelation 

H0: residuals are not correlated 

H1: positive autocorrelation is present 



Testing for Positive 
Autocorrelation 

 Calculate the Durbin-Watson test statistic = D  

    (The Durbin-Watson Statistic can be found using Excel or Minitab) 

Decision rule:  reject H0 if D < dL 

H0: positive autocorrelation does not exist 

H1: positive autocorrelation is present 

0 dU 2 dL 

Reject H0 Do not reject H0 

 Find the values dL and dU from the Durbin-Watson table 

   (for sample size n and number of independent variables k) 

Inconclusive 



• Suppose we have the following time series data: 

 

 

 

 

 

 

• Is there autocorrelation? 

y = 30.65 + 4.7038x 
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• Example with  n = 25: 

Durbin-Watson Calculations 

Sum of Squared 

Difference of Residuals 3296.18 

Sum of Squared 

Residuals 3279.98 

Durbin-Watson 

Statistic 1.00494 

y = 30.65 + 4.7038x 

R
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 = 0.8976
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Testing for Positive 
Autocorrelation 

Excel/PHStat output: 

1.00494
3279.98

3296.18
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• Here, n = 25 and there is k = 1 one independent variable 
 

• Using the Durbin-Watson table, dL = 1.29  and  dU = 1.45 
 

• D = 1.00494 < dL = 1.29, so reject H0 and conclude that 
significant positive autocorrelation exists 

Testing for Positive 
Autocorrelation 

Decision:  reject H0 since  

                 D = 1.00494 < dL 

0 dU=1.45 2 dL=1.29 

Reject H0 Do not reject H0 Inconclusive 



Inferences About the Slope 

• The standard error of the regression slope 
coefficient (b1) is estimated by 
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Inferences About the Slope:  
t Test 

• t test for a population slope 
– Is there a linear relationship between X and Y? 

• Null and alternative hypotheses 
–   H0:  β1 = 0 (no linear relationship) 
–   H1:  β1 ≠ 0 (linear relationship does exist) 

• Test statistic   
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where: 

 b1 = regression slope 
         coefficient 

 β1 = hypothesized slope 

 Sb1 = standard 
          error of the slope 



Inferences About the Slope:  
t Test Example 

House Price 

in $1000s 

(y) 

Square Feet  

(x) 

245 1400 

312 1600 

279 1700 

308 1875 

199 1100 

219 1550 

405 2350 

324 2450 

319 1425 

255 1700 

(sq.ft.) 0.1098 98.25 price house 

Estimated Regression Equation: 

The slope of this model is 0.1098  

Is there a relationship between the square footage 

of the house and its sales price? 



Inferences About the Slope:  
t Test Example 

Test Statistic:  tSTAT = 3.329 

There is sufficient evidence 

that square footage affects 

house price 

Decision:  Reject H0 

Reject H0 Reject H0 

a/2=.025 

-tα/2 
Do not reject H0 

0 
tα/2 

a/2=.025 

-2.3060 2.3060 3.329 

d.f. = 10- 2 = 8 

H0: β1 = 0 

H1: β1 ≠ 0 



F Test for Significance 

• F Test statistic: 

 
   where 
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where FSTAT follows an F distribution with  k  numerator  and (n – k - 1)  
denominator degrees of freedom  
 
(k = the number of independent variables in the regression model) 



F Test for Significance 

H0: β1 = 0 

H1: β1 ≠ 0 

a = .05 

df1= 1      df2 = 8  

Test Statistic:  

 

 

Decision: 

 

 

Conclusion: 

 

Reject H0 at  a = 0.05 

There is sufficient evidence that house size 
affects selling price 

0  

a = .05 

F.05 = 5.32 
Reject H0 Do not  

reject H0 

11.08FSTAT 
MSE

MSR

Critical 
Value:   

Fa = 5.32 

F 



t Test for a Correlation Coefficient 

• Hypotheses  
 H0: ρ = 0  (no correlation between X and Y)  

 H1: ρ ≠ 0  (correlation exists) 

 
• Test statistic 

 

       (with n – 2 degrees of freedom) 
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t-test For A Correlation Coefficient 

Is there evidence of a linear relationship between square feet 
and house price at the .05 level of significance? 

H0: ρ = 0    (No correlation) 

H1: ρ ≠ 0    (correlation exists) 

   a =.05 ,   df = 10 - 2  = 8 

3.329

210

.7621

0.762

2n

r1

ρr
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t-test For A Correlation Coefficient 

Conclusion: 
There is evidence of a 
linear association at the 
5% level of significance 

Decision: 
Reject H0 

Reject H0 Reject H0 

a/2=.025 

-tα/2 
Do not reject H0 

0 
tα/2 

a/2=.025 

-2.3060 2.3060 

3.329 

d.f. = 10-2 = 8 

3.329
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Estimating Mean Values and 
Predicting Individual Values 

Y 

X    Xi 

Y = b0+b1Xi 

 

Confidence 
Interval for 
the mean of 
Y, given Xi 

Prediction Interval for 
an individual Y, given 
Xi 

Goal:  Form intervals around Y to express uncertainty about the 
value of Y for a given Xi 

Y 

 

DCOVA 



Pitfalls of Regression Analysis 

• Lacking an awareness of the assumptions 
underlying least-squares regression 

• Not knowing how to evaluate the assumptions 

• Not knowing the alternatives to least-squares 
regression if a particular assumption is 
violated 

• Using a regression model without knowledge 
of the subject matter 

• Extrapolating outside the relevant range 



Strategies for Avoiding  
the Pitfalls of Regression 

• Start with a scatter plot of X vs. Y to observe 
possible relationship 

• Perform residual analysis to check the 
assumptions 

– Plot the residuals vs. X to check for violations of 
assumptions such as homoscedasticity 

– Use a histogram, stem-and-leaf display, boxplot, or 
normal probability plot of the residuals to uncover 
possible non-normality 



Strategies for Avoiding  
the Pitfalls of Regression 

• If there is violation of any assumption, use 
alternative methods or models 

• If there is no evidence of assumption 
violation, then test for the significance of the 
regression coefficients and construct 
confidence intervals and prediction intervals 

• Avoid making predictions or forecasts outside 
the relevant range 



EXERCISE 



13.4 (cont’d) 

The marketing manager of a large supermarket 
chain would like to use shelf space to predict the 
sales of pet food. A random sample of 12 equal-
sized stores is selected, with the following 
results 



13.4 (cont’d) 

Store Shelf Space (X) (Feet) Weekly Sales (Y) ($) 
1 5 160 
2 5 220 
3 5 140 
4 10 190 
5 10 240 
6 10 260 
7 15 230 
8 15 270 
9 15 280 

10 20 260 
11 20 290 
12 20 310 



13.4 

a. Assuming a linear relationship, use the least-
squares method to compute the regression 
coefficients b0 and b1 

b. Interpret the meaning of the Y intercept, b0 

and the slope, b1 in this problem 

c. Predict the weekly sales of pet food for stores 
with 8 feet of shelf space for pet food. 



Example 

Hours Spent Studying (X) Math SAT Score (Y) 
4 390 
9 580 

10 650 
14 730 
4 410 
7 530 

12 600 
22 790 
1 350 
3 400 
8 590 

11 640 
5 450 
6 520 

10 690 



THANK YOU 


