Business Statistic

Week 14 Linear Regression

Learning Objectives

In this chapter, you learn:

- How to use regression analysis to predict the value of a dependent variable based on an independent variable
- The meaning of the regression coefficients b₀ and b₁
- How to evaluate the assumptions of regression analysis and know what to do if the assumptions are violated
- To make inferences about the slope and correlation coefficient
- To estimate mean values and predict individual values

Correlation vs. Regression

- A scatter plot can be used to show the relationship between two variables
- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables
 - Correlation is only concerned with strength of the relationship
 - No causal effect is implied with correlation
 - Scatter plots were first presented in Ch. 2
 - Correlation was first presented in Ch. 3

Introduction to Regression Analysis

- Regression analysis is used to:
 - Predict the value of a dependent variable based on the value of at least one independent variable
 - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to predict or explain

Independent variable: the variable used to predict or explain the dependent variable

Simple Linear Regression Model

- Only **one** independent variable, X
- Relationship between X and Y is described by a linear function
- Changes in Y are assumed to be related to changes in X

Types of Relationships

Χ

Х

Types of Relationships

Types of Relationships

Simple Linear Regression Model

Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

The Least Squares Method

 b_0 and b_1 are obtained by finding the values of that minimize the sum of the squared differences between Y and \hat{Y} :

$$\min \sum (Y_{i} - \hat{Y}_{i})^{2} = \min \sum (Y_{i} - (b_{0} + b_{1}X_{i}))^{2}$$

Interpretation of the Slope and the Intercept

- b₀ is the estimated mean value of Y when the value of X is zero
- b₁ is the estimated change in the mean value of Y as a result of a one-unit increase in X

Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

Simple Linear Regression Example: Data

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Simple Linear Regression Example: Scatter Plot

House price model: Scatter Plot

Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line

Simple Linear Regression Example: Interpretation of b_o

house price = 98.24833 + 0.10977 (square feet)

- b₀ is the estimated mean value of Y when the value of X is zero (if X = 0 is in the range of observed X values)
- Because a house cannot have a square footage of 0, b₀ has no practical application

Simple Linear Regression Example: Interpreting b₁

house price = 98.24833 + 0.10977 (square feet)

- b₁ estimates the change in the mean value of
 Y as a result of a one-unit increase in X
 - Here, b₁ = 0.10977 tells us that the mean value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Simple Linear Regression Example: Making Predictions

Predict the price for a house with 2000 square feet:

house price = 98.24833 + 0.10977 (sq.ft.) = 98.24833 + 0.10977(2000)= 317.78

The predicted price for a house with 2000 square feet is 317.78(\$1,000s) = \$317,780

Simple Linear Regression Example: Making Predictions

• When using a regression model for prediction, only predict within the relevant range of data

Measures of Variation

• Total variation is made up of two parts: SST = SSR + SSE

Regression Sum of Squares

Error Sum of Squares

 $SST = \sum (Y_i - Y)^2$

Total Sum of

Squares

 $SSR = \sum (\hat{Y}_i - \overline{Y})^2 \quad SSE = \sum (Y_i - \hat{Y}_i)^2$

where:

 $\overline{\mathbf{Y}}$ = Mean value of the dependent variable

 Y_i = Observed value of the dependent variable

= Predicted value of Y for the given X_i value

Measures of Variation

- SST = total sum of squares (Total Variation)
 - Measures the variation of the Y_i values around their mean Y
- SSR = regression sum of squares (Explained Variation)
 - Variation attributable to the relationship between X and Y
- SSE = error sum of squares (Unexplained Variation)

- Variation in Y attributable to factors other than X

Measures of Variation

Coefficient of Determination, r²

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called rsquared and is denoted as r²

$$r^{2} = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

note:
$$0 \le r^2 \le 1$$

Examples of Approximate r² Values

$$r^2 = 1$$

Perfect linear relationship between X and Y:

100% of the variation in Y is explained by variation in X

Examples of Approximate r² Values

Weaker linear relationships between X and Y:

Some but not all of the variation in Y is explained by variation in X

Examples of Approximate r² Values

$$r^{2} = 0$$

$$r^2 = 0$$

No linear relationship between X and Y:

The value of Y does not depend on X. (None of the variation in Y is explained by variation in X)

Standard Error of Estimate

 The standard deviation of the variation of observations around the regression line is estimated by

Where

SSE = error sum of squares n = sample size

Comparing Standard Errors

 $S_{\ensuremath{\mbox{\scriptsize YX}}}$ is a measure of the variation of observed Y values from the regression line

The magnitude of S_{YX} should always be judged relative to the size of the Y values in the sample data

i.e., $S_{YX} = 41.33 K is moderately small relative to house prices in the \$200K - \$400K range

Assumptions of Regression L.I.N.E

- <u>L</u>inearity
 - The relationship between X and Y is linear
- <u>Independence of Errors</u>
 - Error values are statistically independent
- <u>N</u>ormality of Error
 - Error values are normally distributed for any given value of X
- <u>Equal Variance</u> (also called homoscedasticity)
 - The probability distribution of the errors has constant variance

Residual Analysis

$$\mathbf{e}_{i} = \mathbf{Y}_{i} - \mathbf{\hat{Y}}_{i}$$

- The residual for observation i, e_i, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Evaluate independence assumption
 - Evaluate normal distribution assumption
 - Examine for constant variance for all levels of X (homoscedasticity)
- Graphical Analysis of Residuals
 - Can plot residuals vs. X

Residual Analysis for Linearity

Residual Analysis for Independence

Checking for Normality

- Examine the Stem-and-Leaf Display of the Residuals
- Examine the Boxplot of the Residuals
- Examine the Histogram of the Residuals
- Construct a Normal Probability Plot of the Residuals

Residual Analysis for Normality

When using a normal probability plot, normal errors will approximately display in a straight line

Residual Analysis for Equal Variance

Measuring Autocorrelation: The Durbin-Watson Statistic

- Used when data are collected over time to detect if autocorrelation is present
- Autocorrelation exists if residuals in one time period are related to residuals in another period

Autocorrelation

- Autocorrelation is correlation of the errors (residuals) over time
 Time (t) Residual Plot
- Here, residuals show a cyclic pattern (not random.) Cyclical patterns are a sign of positive autocorrelation
 10
 5
 0
 -5
 -10
 -15

15

Time (t)

 Violates the regression assumption that residuals are random and independent

The Durbin-Watson Statistic

• The Durbin-Watson statistic is used to test for autocorrelation

H₀: residuals are not correlated

H₁: positive autocorrelation is present

- The possible range is $0 \le D \le 4$
- D should be close to 2 if H₀ is true
- D less than 2 may signal positive autocorrelation, D greater than 2 may signal negative autocorrelation

H₀: positive autocorrelation does not exist

H₁: positive autocorrelation is present

- Calculate the Durbin-Watson test statistic = D (The Durbin-Watson Statistic can be found using Excel or Minitab)
- Find the values d_L and d_U from the Durbin-Watson table (for sample size n and number of independent variables k)

• Suppose we have the following time series data:

• Is there autocorrelation?

Excel/PHStat output:

Durbin-Watson Calculations		
Sum of Squared Difference of Residuals	3296.18	
Sum of Squared Residuals	3279.98	
Durbin-Watson Statistic	1.00494	

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2} = \frac{3296.18}{3279.98} = 1.00494$$

- Here, n = 25 and there is k = 1 one independent variable
- Using the Durbin-Watson table, $d_L = 1.29$ and $d_U = 1.45$
- D = 1.00494 < d_L = 1.29, so reject H₀ and conclude that significant positive autocorrelation exists

Inferences About the Slope

 The standard error of the regression slope coefficient (b₁) is estimated by

$$S_{b_1} = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

 S_{b_1} = Estimate of the standard error of the slope $S_{YX} = \sqrt{\frac{SSE}{n-2}}$ = Standard error of the estimate

Inferences About the Slope: t Test

- t test for a population slope

 — Is there a linear relationship between X and Y?
- Null and alternative hypotheses
 - $H_0: \beta_1 = 0$ (no linear relationship)
 - H_1 : $\beta_1 \neq 0$ (linear relationship does exist)
- Test statistic

$$t_{\text{STAT}} = \frac{b_1 - \beta_1}{S_{b_1}}$$
$$d.f. = n - 2$$

where:

- $b_1 = regression slope$ coefficient
- β_1 = hypothesized slope
- $S_{b1} = standard$ error of the slope

Inferences About the Slope: t Test Example

House Price in \$1000s (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Is there a relationship between the square footage of the house and its sales price?

Inferences About the Slope: t Test Example

Test Statistic:
$$\mathbf{t}_{\text{STAT}} = 3.329$$

 $H_0: \beta_1 = 0$
 $H_1: \beta_1 \neq 0$

Decision: Reject H_0

There is sufficient evidence that square footage affects house price

F Test for Significance

• F Test statistic:

where

$$MSR = \frac{SSR}{k}$$
$$MSE = \frac{SSE}{n-k-1}$$

where F_{STAT} follows an F distribution with k numerator and (n - k - 1) denominator degrees of freedom

(k = the number of independent variables in the regression model)

F Test for Significance

t Test for a Correlation Coefficient

• Hypotheses

H ₀ : ρ = 0	(no correlation between X and Y)
H ₁ : ρ ≠ 0	(correlation exists)

• Test statistic

(with n - 2 degrees of freedom)

where
$$r = +\sqrt{r^2} \text{ if } b_1 > 0$$

$$r = -\sqrt{r^2} \text{ if } b_1 < 0$$

t-test For A Correlation Coefficient

Is there evidence of a linear relationship between square feet and house price at the .05 level of significance?

$$H_0: \rho = 0$$
 (No correlation)
 $H_1: \rho \neq 0$ (correlation exists)
 $\alpha = .05$, df = 10 - 2 = 8

$$t_{\text{STAT}} = \frac{r - \rho}{\sqrt{\frac{1 - r^2}{n - 2}}} = \frac{.762 - 0}{\sqrt{\frac{1 - .762^2}{10 - 2}}} = 3.329$$

t-test For A Correlation Coefficient

Estimating Mean Values and Predicting Individual Values

DCOVA

Goal: Form intervals around Y to express uncertainty about the value of Y for a given X_i

Pitfalls of Regression Analysis

- Lacking an awareness of the assumptions underlying least-squares regression
- Not knowing how to evaluate the assumptions
- Not knowing the alternatives to least-squares regression if a particular assumption is violated
- Using a regression model without knowledge of the subject matter
- Extrapolating outside the relevant range

Strategies for Avoiding the Pitfalls of Regression

- Start with a scatter plot of X vs. Y to observe possible relationship
- Perform residual analysis to check the assumptions
 - Plot the residuals vs. X to check for violations of assumptions such as homoscedasticity
 - Use a histogram, stem-and-leaf display, boxplot, or normal probability plot of the residuals to uncover possible non-normality

Strategies for Avoiding the Pitfalls of Regression

- If there is violation of any assumption, use alternative methods or models
- If there is no evidence of assumption violation, then test for the significance of the regression coefficients and construct confidence intervals and prediction intervals
- Avoid making predictions or forecasts outside the relevant range

EXERCISE

13.4 (cont'd)

The marketing manager of a large supermarket chain would like to use shelf space to predict the sales of pet food. A random sample of 12 equalsized stores is selected, with the following results

13.4 (cont'd)

Store	Shelf Space (X) (Feet)	Weekly Sales (Y) (\$)
1	5	160
2	5	220
3	5	140
4	10	190
5	10	240
6	10	260
7	15	230
8	15	270
9	15	280
10	20	260
11	20	290
12	20	310

13.4

- a. Assuming a linear relationship, use the leastsquares method to compute the regression coefficients b_0 and b_1
- b. Interpret the meaning of the Y intercept, b_0 and the slope, b_1 in this problem
- c. Predict the weekly sales of pet food for stores with 8 feet of shelf space for pet food.

Example

Hours Spent Studying (X)	Math SAT Score (Y)
4	390
9	580
10	650
14	730
4	410
7	530
12	600
22	790
1	350
3	400
8	590
11	640
5	450
6	520
10	690

THANK YOU