# Statistik Bisnis 

Week 14
Linear Regression

## Learning Objectives

## In this chapter, you learn:

- How to use regression analysis to predict the value of a dependent variable based on an independent variable
- The meaning of the regression coefficients $b_{0}$ and $b_{1}$
- How to evaluate the assumptions of regression analysis and know what to do if the assumptions are violated
- To make inferences about the slope and correlation coefficient
- To estimate mean values and predict individual values


## Correlation vs. Regression

- A scatter plot can be used to show the relationship between two variables
- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables
- Correlation is only concerned with strength of the relationship
- No causal effect is implied with correlation
- Scatter plots were first presented in Ch. 2
- Correlation was first presented in Ch. 3


## Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to predict or explain
Independent variable: the variable used to predict or explain the dependent variable

## Simple Linear Regression Model

- Only one independent variable, $X$
- Relationship between $X$ and $Y$ is described by a linear function
- Changes in $Y$ are assumed to be related to changes in X


## Types of Relationships



## Curvilinear relationships




## Types of Relationships



## Types of Relationships



## Simple Linear Regression Model



## Simple Linear Regression Model



## Simple Linear Regression Equation (Prediction Line)

The simple linear regression equation provides an estimate of the population regression line

Estimated (or predicted) Y
value for observation i

Estimate of the Estimate of the
regression intercept regression slope


## The Least Squares Method

$b_{0}$ and $b_{1}$ are obtained by finding the values of that minimize the sum of the squared differences between Y and $\hat{\mathrm{Y}}$ :
$\min \sum\left(\mathrm{Y}_{\mathrm{i}}-\hat{Y}_{\mathrm{i}}\right)^{2}=\min \sum\left(\mathrm{Y}_{\mathrm{i}}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{\mathrm{i}}\right)\right)^{2}$

## Linear Trend Model

$$
\hat{Y}_{i}=b_{0}+b_{1} X_{i}
$$

$$
b_{1}=\frac{\sum_{i=1} X_{i} Y_{i}-\frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{\sum_{i=1}^{n} X_{i}^{2}-\frac{\left({ }_{i=1}\right.}{n}} \quad b_{0}=\bar{Y}-b_{1} \bar{X}}{x}
$$

## Interpretation of the Slope and the Intercept

- $b_{0}$ is the estimated mean value of $Y$ when the value of $X$ is zero
- $b_{1}$ is the estimated change in the mean value of $Y$ as a result of a one-unit increase in $X$


## Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
- Dependent variable $(\mathrm{Y})=$ house price in $\$ 1000$ s
- Independent variable $(X)=$ square feet



## Simple Linear Regression Example: Data

| House Price in \$1000s <br> $(\mathrm{Y})$ | Square Feet <br> $(\mathrm{X})$ |
| :---: | :---: |
| 245 | 1400 |
| 312 | 1600 |
| 279 | 1700 |
| 308 | 1875 |
| 199 | 1100 |
| 219 | 1550 |
| 405 | 2350 |
| 324 | 2450 |
| 319 | 1425 |
| 255 | 1700 |

## Simple Linear Regression Example: Scatter Plot

House price model: Scatter Plot


## Simple Linear Regression Example: Graphical Representation

House price model: Scatter Plot and Prediction Line


## Simple Linear Regression Example: Interpretation of $b$ 。

house price $=98.24833+0.10977$ (square feet)

- $b_{0}$ is the estimated mean value of $Y$ when the value of $X$ is zero (if $X=0$ is in the range of observed $X$ values)
- Because a house cannot have a square footage of $0, b_{0}$ has no practical application


# Simple Linear Regression Example: Interpreting $\mathrm{b}_{1}$ 

house price $=98.24833+0.10977$ (square feet)

- $b_{1}$ estimates the change in the mean value of $Y$ as a result of a one-unit increase in $X$
- Here, $b_{1}=0.10977$ tells us that the mean value of a house increases by . 10977 (\$1000) = \$109.77, on average, for each additional one square foot of size


# Simple Linear Regression Example: Making Predictions 

Predict the price for a house with 2000 square feet:
house price $=98.24833+0.10977$ (sq.ft.)

$$
\begin{aligned}
& =98.24833+0.10977(2000) \\
& =317.78
\end{aligned}
$$

The predicted price for a house with 2000 square feet is $317.78(\$ 1,000$ s) $=\$ 317,780$

## Simple Linear Regression Example: Making Predictions

- When using a regression model for prediction, only predict within the relevant range of data



## Measures of Variation

- Total variation is made up of two parts: SST $=$ SSR + SSE

Total Sum of Squares

$$
\mathrm{SSR}=\sum\left(\hat{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}
$$



Error Sum of Squares

$$
\text { SSE }=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}
$$

SST $=\sum\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}$
where:

$$
\begin{aligned}
\bar{Y} & =\text { Mean value of the dependent variable } \\
Y_{i} & =\text { Observed value of the dependent variable } \\
& =\text { Predicted value of } Y \text { for the given } X_{i} \text { value }
\end{aligned}
$$

## Measures of Variation

- SST = total sum of squares (Total Variation)
- Measures the variation of the $Y_{i}$ values around their mean $Y$
- $\operatorname{SSR}=$ regression sum of squares (Explained Variation)
- Variation attributable to the relationship between $X$ and $Y$
- SSE = error sum of squares (Unexplained Variation)
- Variation in Y attributable to factors other than X


## Measures of Variation



## Coefficient of Determination, $r^{2}$

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called $r$ squared and is denoted as $r^{2}$

$$
r^{2}=\frac{S S R}{S S T}=\frac{\text { regression sum of squares }}{\text { total sum of squares }}
$$

$$
\text { note: } 0 \leq r^{2} \leq 1
$$

## Examples of Approximate $r^{2}$ Values


$r^{2}=1$

Perfect linear relationship between $X$ and $Y$ :
$100 \%$ of the variation in $Y$ is explained by variation in $X$

## Examples of Approximate $r^{2}$ Values


$0<r^{2}<1$

Weaker linear relationships between $X$ and Y :

Some but not all of the variation in $Y$ is explained by variation in $X$

## Examples of Approximate $r^{2}$ Values



$$
r^{2}=0
$$

No linear relationship between $X$ and $Y$ :
The value of $Y$ does not depend on $X$. (None of the variation in $Y$ is explained by variation in $X$ )

## Standard Error of Estimate

- The standard deviation of the variation of observations around the regression line is estimated by

$$
S_{Y X}=\sqrt{\frac{S S E}{n-2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}}
$$

Where

$$
\begin{aligned}
& \text { SSE }=\text { error sum of squares } \\
& n=\text { sample size }
\end{aligned}
$$

## Comparing Standard Errors

$S_{Y X}$ is a measure of the variation of observed $Y$ values from the regression line


The magnitude of $\mathrm{S}_{\mathrm{Yx}}$ should always be judged relative to the size of the $Y$ values in the sample data
i.e., $\mathrm{S}_{Y X}=\$ 41.33 \mathrm{~K}$ is moderately small relative to house prices in the \$200K - \$400K range

## Assumptions of Regression L.I.N.E

- Linearity
- The relationship between $X$ and $Y$ is linear
- Independence of Errors
- Error values are statistically independent
- Normality of Error
- Error values are normally distributed for any given value of $X$
- Equal Variance (also called homoscedasticity)
- The probability distribution of the errors has constant variance


## Residual Analysis

$$
\mathrm{e}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{Y}_{\mathrm{i}}
$$

- The residual for observation $\mathrm{i}, \mathrm{e}_{\mathrm{i}}$, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
- Examine for linearity assumption
- Evaluate independence assumption
- Evaluate normal distribution assumption
- Examine for constant variance for all levels of $X$ (homoscedasticity)
- Graphical Analysis of Residuals
- Can plot residuals vs. X


## Residual Analysis for Linearity



## Residual Analysis for Independence


residuals


## Checking for Normality

- Examine the Stem-and-Leaf Display of the Residuals
- Examine the Boxplot of the Residuals
- Examine the Histogram of the Residuals
- Construct a Normal Probability Plot of the Residuals


## Residual Analysis for Normality

When using a normal probability plot, normal errors will approximately display in a straight line

Percent


## Residual Analysis for Equal Variance



## Measuring Autocorrelation: The Durbin-Watson Statistic

- Used when data are collected over time to detect if autocorrelation is present
- Autocorrelation exists if residuals in one time period are related to residuals in another period


## Autocorrelation

- Autocorrelation is correlation of the errors (residuals) over time

Time (t) Residual Plot

- Here, residuals show a cyclic pattern (not random.) Cyclical patterns are a sign of positive autocorrelation


Time (t)

- Violates the regression assumption that residuals are random and independent


## The Durbin-Watson Statistic

- The Durbin-Watson statistic is used to test for autocorrelation
$\mathrm{H}_{0}$ : residuals are not correlated
$\mathrm{H}_{1}$ : positive autocorrelation is present

$$
D=\frac{\sum_{i=2}^{n}\left(e_{i}-e_{i-1}\right)^{2}}{\sum_{i=1}^{n} e_{i}^{2}}
$$

- The possible range is $0 \leq \mathrm{D} \leq 4$
- D should be close to 2 if $\mathrm{H}_{0}$ is true
- D less than 2 may signal positive autocorrelation, D greater than 2 may signal negative autocorrelation


## Testing for Positive Autocorrelation

$\mathrm{H}_{0}$ : positive autocorrelation does not exist
$\mathrm{H}_{1}$ : positive autocorrelation is present

- Calculate the Durbin-Watson test statistic = D
(The Durbin-Watson Statistic can be found using Excel or Minitab)
- Find the values $d_{L}$ and $d_{U}$ from the Durbin-Watson table (for sample size $\mathbf{n}$ and number of independent variables $\mathbf{k}$ )



## Testing for Positive Autocorrelation

- Suppose we have the following time series data:

- Is there autocorrelation?


## Testing for Positive Autocorrelation

- Example with $\mathrm{n}=25$ :

Excel/PHStat output:


## Testing for Positive Autocorrelation

- Here, $\mathrm{n}=25$ and there is $\mathrm{k}=1$ one independent variable
- Using the Durbin-Watson table, $\mathrm{d}_{\mathrm{L}}=1.29$ and $\mathrm{d}_{\mathrm{U}}=1.45$
- $D=1.00494<d_{L}=1.29$, so reject $H_{0}$ and conclude that significant positive autocorrelation exists



## Inferences About the Slope

- The standard error of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
S_{b_{1}}=\frac{S_{Y X}}{\sqrt{S S X}}=\frac{S_{Y X}}{\sqrt{\sum\left(X_{i}-\bar{X}\right)^{2}}}
$$

where:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{b}_{1}}=\text { Estimate of the standard error of the slope } \\
& \mathrm{S}_{\mathrm{YX}}=\sqrt{\frac{\mathrm{SSE}}{\mathrm{n}-2}}=\text { Standard error of the estimate }
\end{aligned}
$$

## Inferences About the Slope: t Test

- $t$ test for a population slope
- Is there a linear relationship between $X$ and $Y$ ?
- Null and alternative hypotheses
- $H_{0}: \beta_{1}=0 \quad$ (no linear relationship)
- $H_{1}: \beta_{1} \neq 0$ (linear relationship does exist)
- Test statistic

$$
\begin{aligned}
\mathrm{t}_{\mathrm{STAT}} & =\frac{\mathrm{b}_{1}-\beta_{1}}{\mathrm{~S}_{\mathrm{b}_{1}}}
\end{aligned} \quad \begin{aligned}
& \text { where: } \\
& \mathrm{b}_{1}=\begin{array}{l}
\text { regression slope } \\
\text { coefficient }
\end{array} \\
& \beta_{1}=\text { hypothesized slope } \\
& \text { d.f. }=\mathrm{n}-2
\end{aligned} \quad \begin{aligned}
& \mathrm{S}_{\mathrm{b} 1}=\text { standard } \\
& \text { error of the slope }
\end{aligned}
$$

## Inferences About the Slope: t Test Example

| House Price <br> in \$1000s <br> $(y)$ | Square Feet <br> $(x)$ |
| :---: | :---: |
| 245 | 1400 |
| 312 | 1600 |
| 279 | 1700 |
| 308 | 1875 |
| 199 | 1100 |
| 219 | 1550 |
| 405 | 2350 |
| 324 | 2450 |
| 319 | 1425 |
| 255 | 1700 |

## Estimated Regression Equation:

$$
\text { house price }=98.25+0.1098 \text { (sq.ft.) }
$$

The slope of this model is 0.1098
Is there a relationship between the square footage of the house and its sales price?

## Inferences About the Slope: t Test Example

Test Statistic: $\mathbf{t}_{\text {STAT }}=\mathbf{3 . 3 2 9}$

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

```
d.f. = 10-2 = 8
```



Decision: Reject $\mathrm{H}_{0}$
There is sufficient evidence that square footage affects house price

## F Test for Significance

- F Test statistic:

$$
F_{S T A T}=\frac{M S R}{M S E}
$$

$$
\begin{aligned}
& \mathrm{MSR}=\frac{\mathrm{SSR}}{\mathrm{k}} \\
& \mathrm{MSE}=\frac{\mathrm{SSE}}{\mathrm{n}-\mathrm{k}-1}
\end{aligned}
$$

where $\mathrm{F}_{\text {STAT }}$ follows an F distribution with $k$ numerator and ( $\mathrm{n}-\mathrm{k}-1$ ) denominator degrees of freedom
( $k=$ the number of independent variables in the regression model)

## F Test for Significance



## t Test for a Correlation Coefficient

- Hypotheses

$$
\begin{array}{ll}
\mathrm{H}_{0}: \rho=0 & \text { (no correlation between } X \text { and } Y \text { ) } \\
H_{1}: \rho \neq 0 & \text { (correlation exists) }
\end{array}
$$

- Test statistic

$$
\mathrm{t}_{\mathrm{STAT}}=\frac{\mathrm{r}-\rho}{\sqrt{\frac{1-\mathrm{r}^{2}}{\mathrm{n}-2}}}
$$

(with $\mathrm{n}-2$ degrees of freedom)

| where |  |
| :--- | :--- |
| $r=+\sqrt{r^{2}}$ | if $b_{1}>0$ |
| $r=-\sqrt{r^{2}}$ | if $b_{1}<0$ |

## t-test For A Correlation Coefficient

Is there evidence of a linear relationship between square feet and house price at the .05 level of significance?

$$
\begin{aligned}
H_{0}: \rho=0 & \text { (No correlation) } \\
H_{1}: \rho \neq 0 & \text { (correlation exists) } \\
\hline \alpha=.05, & d f=10-2=8
\end{aligned}
$$

$$
\mathrm{t}_{\text {STAT }}=\frac{\mathrm{r}-\rho}{\sqrt{\frac{1-\mathrm{r}^{2}}{\mathrm{n}-2}}}=\frac{.762-0}{\sqrt{\frac{1-.762^{2}}{10-2}}}=3.329
$$

## t-test For A Correlation Coefficient



## Decision: <br> Reject $\mathrm{H}_{0}$

## Conclusion:

There is evidence of a linear association at the $5 \%$ level of significance

## Estimating Mean Values and Predicting Individual Values

Goal: Form intervals around $Y$ to express uncertainty about the value of $Y$ for a given $X_{i}$


## Pitfalls of Regression Analysis

- Lacking an awareness of the assumptions underlying least-squares regression
- Not knowing how to evaluate the assumptions
- Not knowing the alternatives to least-squares regression if a particular assumption is violated
- Using a regression model without knowledge of the subject matter
- Extrapolating outside the relevant range


## Strategies for Avoiding the Pitfalls of Regression

- Start with a scatter plot of $X$ vs. $Y$ to observe possible relationship
- Perform residual analysis to check the assumptions
- Plot the residuals vs. $X$ to check for violations of assumptions such as homoscedasticity
- Use a histogram, stem-and-leaf display, boxplot, or normal probability plot of the residuals to uncover possible non-normality


## Strategies for Avoiding the Pitfalls of Regression

- If there is violation of any assumption, use alternative methods or models
- If there is no evidence of assumption violation, then test for the significance of the regression coefficients and construct confidence intervals and prediction intervals
- Avoid making predictions or forecasts outside the relevant range

EXERCISE

## 13.4 (cont'd)

Seorang manajer marketing dari sebuah supermarket ingin menggunakan tinggi rak untuk memprediksi penjualan makanan binatang peliharaan. Sampel acak yang terdiri dari 12 toko yang ukurannya hampir sama dipilih dengan hasil sebagai berikut:

## 13.4 (cont'd)

| Toko | Tinggi Rak (ft) | Penjualan <br> mingguan (\$) |
| :---: | :---: | :---: |
| 1 | 5 | 160 |
| 2 | 5 | 220 |
| 3 | 5 | 140 |
| 4 | 10 | 190 |
| 5 | 10 | 240 |
| 6 | 10 | 260 |
| 7 | 15 | 230 |
| 8 | 15 | 270 |
| 9 | 15 | 280 |
| 10 | 20 | 260 |
| 12 | 20 | 290 |

## 13.4

a. Gunakan metode kuadrat terkecil untuk menentukan koefisien regresi $b_{0}$ dan $b_{1}$
b. Interpretasikan arti $b_{0}$ dan $b_{1}$ pada permasalahan ini.
c. Prediksikan penjualan mingguan makanan binatang peliharaan untuk toko dengan tinggi rak 8 ft .

## Example

| Hours Spent Studying (X) | Math SAT Score (Y) |
| :---: | :---: |
| 4 | 390 |
| 9 | 580 |
| 10 | 650 |
| 14 | 730 |
| 4 | 410 |
| 7 | 530 |
| 12 | 600 |
| 22 | 790 |
| 1 | 350 |
| 3 | 400 |
| 8 | 590 |
| 11 | 640 |
| 5 | 450 |
| 6 | 520 |
| 10 | 690 |

## THANK YOU

