Statistic for Business

Week 2

Numerical Descriptive Measures

Agenda

Time	Activity
90 minutes	Central Tendency
60 minutes	Variation and Shape
30 minutes	Exploring Numerical Data

Objectives

By the end of this class, student should be able to understand:

- How to measures central tendency in statistics
- How to interpret those central tendency measurements

Numerical Descriptive Measures

CENTRAL TENDENCY

Central Tendency

Consider this height data:

160 157 162 170 168 174 156 173 157

What is the mean height?

How about this data of business statistic's students monthly spending:

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

What is the MEAN?

In this case we can only **ESTIMATE the MEAN**...

Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

Keyword: "MIDPOINTS"

Estimated Mean

Midpoint	Frequency	Mid * f
250000	2	500000
750000	7	5250000
1250000	13	16250000
1750000	5	8750000
Total	27	30750000

$$Estimated Mean = \frac{30750000}{27} = 1138888.89$$

The following is "Student A" Score:

Course	Credits	Score
Business Math	3	60
English	2	80
Organization Behavior	3	100
Statistics	4	90
Operation Management	3	70

What is the average score of "Student A"?

Consider these two sets of data:

Α	150 155	152 155	154 155	155 155	155 157	Mean?
В	150 155	152 155	154 155	155 155	155 187	Mean?

It is DANGEROUS to ONLY use MEAN in describing a data

Median position =
$$\frac{n+1}{2}$$
 position in the ordered data

Consider these two sets of data:

Α	150 15 155 15	2 154 155 5 155 155	155 157	Median?
В	150 15 155 15	2 154 155 5 155 155	155 187	Median?

What is the median of this height data:

160 157 162 170 168 174 156 173 157

How about this data:

160 157 162 170 168 174 156 173 157 150

How about this data of business statistic's students monthly spending:

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

What is the MEDIAN?

Estimated Median

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

Estimated Median = Rp. 1.173.076,92

Estimated Median

where:

- L is the lower class boundary of the group containing the median
- n is the total number of data
- cfb is the cumulative frequency of the groups before the median group
- $\mathbf{f}_{\mathbf{m}}$ is the frequency of the median group
- w is the group width

What is the mode of this height data:

160 157 162 170 168 174 156 173 157

How about this data:

160 157 162 170 168 174 156 173 150

How about this data of business statistic's students monthly spending:

Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

What is the MODE?

The MODAL group of monthly spending is Rp. 1.000.000 but less than Rp. 1.500.000 But the actual **Mode** may not even be in that group!

Without the raw data we don't really know...

Estimated Mode

Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

Estimated Mode = Rp. 1.214.285,72

Estimated Mode

Estimated Mode = L +
$$\frac{f_m - f_{m-1}}{(f_m - f_{m-1}) + (f_m - f_{m+1})} \times w$$

where:

- L is the lower class boundary of the modal group
- f_{m-1} is the frequency of the group before the modal group
- f_m is the frequency of the modal group
- f_{m+1} is the frequency of the group after the modal group
- w is the group width

Central Tendency

EXERCISE

3.10

This is the data of the amount that sample of nine customers spent for lunch (\$) at a fast-food restaurant:

 $4.20 \ 5.03 \ 5.86 \ 6.45 \ 7.38 \ 7.54 \ 8.46 \ 8.47 \ 9.87$

Compute the mean and median.

3.12

The following data is the overall miles per gallon (MPG) of 2010 small SUVs:

24	23	22	21	22	22	18	18	26
26	26	19	19	19	21	21	21	21
21	18	29	21	22	22	16	16	

Compute the median and mode.

GEOMETRIC MEAN

Compounding Data

Suppose you have invested your savings in the stock market for five years. If your returns each year were 90%, 10%, 20%, 30% and -90%, what would your average return be during this period?

If we use arithmetic mean in this case

The average return during this period = **12%**

Let say that you invest \$100 in year 0

How much your stocks worth in year 5?

$GM = \sqrt[5]{1.9 \times 1.1 \times 1.2 \times 1.3 \times 0.1 - 1}$

GM = -20.08%

Well, that's pretty bad...

This is called **geometric mean rate of return**

Measure of Central Tendency For The Rate Of Change Of A Variable Over Time:

The Geometric Mean & The Geometric Rate of Return

- Geometric mean
 - Used to measure the rate of change of a variable over time

$$\overline{X}_G = (X_1 \times X_2 \times \Lambda \times X_n)^{1/n}$$

- Geometric mean rate of return
 - Measures the status of an investment over time

$$\overline{R}_{G} = [(1+R_1) \times (1+R_2) \times \Lambda \times (1+R_n)]^{1/n} - 1$$

• Where R_i is the rate of return in time period i

Lets reconsider the previous problem. We knew that we invest \$100 in year 0 (zero). However, by the end of year 5 the value of the stock became \$32.6. Calculate the annual average return!

$$GM = \sqrt[5]{\frac{32.6}{100}} - 1$$

GM=-20.08%

• This value consistent with what we found earlier

Population of West Java

Population of West Java:

- Year 2000: 35.729.537
- Year 2010: 43.053.732

Population growth rate per year?

3.22

In 2006-2009, the value of precious metals changed rapidly. The data in the following table represent the total rate of return (in percentage) for platinum, gold, an silver from 2006 through 2009:

Year	Platinum	Gold	Silver
2009	62.7	25.0	56.8
2008	-41.3	4.3	-26.9
2007	36.9	31.9	14.4
2006	15.9	23.2	46.1

3.22

- a. Compute the geometric mean rate of return per year for platinum, gold, and silver from 2006 through 2009.
- b. What conclusions can you reach concerning the geometric mean rates of return of the three precious metals?

VARIATION AND SHAPE

Variation and Shape

Review on Central Tendency

Consider this data:

160 157 162 170 168 174 156 173 157 150

What is the mean, median, and mode?

Range

Consider this data:

160 157 162 170 168 174 156 173 157 150

What is the Range?

Range

$$Range = X_{max} - X_{min}$$

Measures of Variation: Why The Range Can Be Misleading

Ignores the way in which data are distributed

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
7	8	9	10	11	12
Range = 12 - 7 = 5					5

			\bigcirc	\bigcirc	8
7	8	9	10	11	12
Range = 12 - 7 = 5					

- Sensitive to outliers

Range =
$$5 - 1 = 4$$

Range = 120 - 1 = 119

Deviation

Let's see this data again:

160 157 162 170 168 174 156 173 157 150

What is the mean?

Mean = 162.7

Deviation

	Deviation	Data
	-2.7	160
Deviation = $X_i - X_i$	-5.7	157
	-0.7	162
	7.3	170
	5.3	168
=156-162.7	11.3	174
	-6.7	156
	10.3	173
	-5.7	157
	-12.7	150

Data	Deviation	(Dev)^2	
160	-2.7	7.29	
157	-5.7	32.49	
162	-0.7	0.49	
170	7.3	53.29	Sum of Squares
168	5.3	28.09	= 594.1
174	11.3	127.69	
156	-6.7	44.89	
173	10.3	106.09	
157	-5.7	32.49	
150	-12.7	161.29	

Sample size (n) = 10

Variance
$$=\frac{594.1}{10-1} = 66.01$$

 $SD = \sqrt{66.01} = 8.125$

• Sample

$$S^{2} = \frac{\sum_{i=1}^{n} \left(X_{i} - \overline{X}\right)^{2}}{n-1}$$

• Population

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{N}$$

Measures of Variation: Comparing Standard Deviations

Standard Deviation

How about this data of business statistic's students monthly spending:

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

What is the STANDARD DEVIATION?

Standard Deviation

How about this data of business statistic's

What is the STANDARD DEVIATION?

Estimated Standard Deviation

Midpoint	Frequency	Dev^2	(Dev^2)*f
250000	2	790123456790.12	1580246913580.25
750000	7	151234567901.24	1058641975308.64
1250000	13	12345679012.35	160493827160.49
1750000	5	373456790123.46	1867283950617.28
Total	27		4666666666666666

 $SD = \sqrt{172839506172.84} = 415739.71$

THE COEFFICIENT OF VARIATION

Let's see this height data again:

160 157 162 170 168 174 156 173 157 150

What is the mean and standard deviation

Mean = 162.7 and SD = 8.125

Students with height before is weighted as follows:

- 50 55 57 52 55
- 6960657170

What is mean and standard deviation?

Mean = 60.4 and SD = 7.8

	Height	Weight
Mean	162.7	60.4
SD	8.125	7.8

Which one has more variability?

Coefficient of Variation: CV_{Height} = 4.99% CV_{Weight}= 12.92%

Locating Extreme Outliers: Z Score

Let's see this height data again:

160 157 162 170 168 174 156 173 157 150

Locating Extreme Outliers: Z Score

Therefore, Z Score for 160 is?

Locating Extreme Outliers: Z Scores

Let's see this height data again:

160 157 162 170 168 174 156 173 157 150

What is the Z Scores of 160, 174, 168 and 150?

 $Z_{160} = -0.33, Z_{174} = 1.39, Z_{168} = 0.65, and Z_{150} = -0.56$

Locating Extreme Outliers: Z Score

- A data value is considered an extreme outlier if its Z-score is less than -3.0 or greater than +3.0.
- The larger the absolute value of the Z-score, the farther the data value is from the mean.

Shape

Let's see this height data again:

160 157 162 170 168 174 156 173 157 150

Shape

What if the height data is like this:

163 168 162 170 168 174 156 173 157 150

Shape

Describes how data are distributed

EXPLORING NUMERICAL DATA

Exploring Numerical Data

Let's consider this height data: 160 157 162 170 168 174 156 What is the Q₁, Q₂ and Q₃?

 $Q_1 = 157$ $Q_2 = 162$ (Median) $Q_3 = 170$

Let's then consider this height data: 160 157 162 170 168 174 156 173 150 What is the Q_1 , Q_2 and Q_3 ?

 $Q_1 = 156.5$ $Q_2 = 162$ (Median) $Q_3 = 171.5$

And this height data: 160 157 162 170 168 174 156 173 157 150 What is the Q_1 , Q_2 and Q_3 ?

Q₁ = 157 Q₂ = 161 (Median) Q₃ = 170

Interquartile Range

Interquartile Range

What is the Interquatile range?

Interquartile Range = 170 – 157 = 13

Interquartile Range

Interquar**i**le Range = $Q_3 - Q_1$

Five-Number Summary

Five-Number Summary

Let's see again this height data: 160 157 162 170 168 174 156 173 157 150 What is the Five-Number Summary?

150 157 161 170 174

Boxplot

Boxplot

Let's see again this height data: 160 157 162 170 168 174 156 173 157 150

Construct the Boxplot?

Boxplot for the Height of Business Statistic's Student 2014

Distribution Shape and The Boxplot

Karl Pearson's Measure of Skewness

$$S_k = \frac{3(162.7 - 161)}{8.125} = 0.63$$

Karl Pearson's Measure of Skewness

$$S_k = \frac{3(\overline{X} - Median)}{S}$$

Bowley's Formula for Measuring Skewness

Height (cm)

Bowley's Formula for Measuring Skewness

$$S_{k} = \frac{(Q_{3} - Q_{2}) - (Q_{2} - Q_{1})}{(Q_{3} - Q_{1})}$$

EXERCISE

This is the data of the amount that sample of nine customers spent for lunch (\$) at a fast-food restaurant:

4.20 5.03 5.86 6.45 7.38 7.54 8.46 8.47 9.87

- a. Compute the mean and median.
- b. Compute the variance, standard deviation, and range
- c. Are the data skewed? If so, how?
- d. Based on the results of (a) through (c), what conclusions can you reach concerning the amount that customers spent for lunch?

In New York State, savings banks are permitted to sell a form of life insurance called savings bank life insurance (SBLI). The approval process consists of underwriting, which includes a review of the application, a medical information bureau check, possible requests for additional medical information and medical exams, and a policy compilation stage, during which the policy pages are generated and sent to the bank for delivery. The ability to deliver approved policies to customers in a timely manner is critical to the profitability of this service to the bank. During a period of one month, a random sample of 14 approved policies was selected, and the following were the total processing times

73 19 16 64 28 28 31 90 60 56 31 56 22 18

a. Compute the mean, median, first quartile, and third quartile.

b. Compute the range, interquartile range, variance, and standard deviation.

c. Are the data skewed? If so, how?

d. What would you tell a customer who enters the bank to purchase this type of insurance policy and asks how long the approval process takes?

In 2006-2009, the value of precious metals changed rapidly. The data in the following table represent the total rate of return (in percentage) for platinum, gold, an silver from 2006 through 2009:

Year	Platinum	Gold	Silver
2009	62.7	25.0	56.8
2008	-41.3	4.3	-26.9
2007	36.9	31.9	14.4
2006	15.9	23.2	46.1

- a. Compute the geometric mean rate of return per year for platinum, gold, and silver from 2006 through 2009.
- b. What conclusions can you reach concerning the geometric mean rates of return of the three precious metals?

The table contains data on the calories and total fat (in grams per serving) for a sample of 12 veggie burgers.

Calories	Fat
110	3.5
110	4.5
90	3.0
90	2.5
120	6.0
130	6.0
120	3.0
100	3.5
140	5.0
70	0.5
100	1.5
120	1.5

- a. For each variable, compute the mean, median, first quartile, and third quartile.
- b. For each variable, compute the range, variance, and standard deviation
- c. Are the data skewed? If so, how?
- d. Compute the coefficient of correlation between calories and total fat.
- e. What conclusions can you reach concerning calories and total fat?

THANK YOU