Statistic for Business

Week 2
Numerical Descriptive Measures

Agenda

Time

Activity

90 minutes Central Tendency

60 minutes Variation and Shape
30 minutes Exploring Numerical Data

Objectives

By the end of this class, student should be able to understand:

- How to measures central tendency in statistics
- How to interpret those central tendency measurements

Numerical Descriptive Measures

CENTRAL TENDENCY

Central Tendency

Mean

Consider this height data:

160157162170168174156173157

What is the mean height?

Mean

Sample size
Observed values

Mean

How about this data of business statistic's students monthly spending:

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000 .000 but less than Rp. 1.500 .000	13
Rp. 1.500 .000 but less than Rp. 2.000 .000	5

What is the MEAN?

Mean

In this case we can only ESTIMATE the MEAN...

Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

Keyword: "MIDPOINTS"

Estimated Mean

Midpoint Frequency Mid * f
250000 2
500000
750000 7
5250000
$1250000 \quad 13$13
1750000 516250000

$$
8750000
$$

$$
\text { Total } 27
$$

30750000

$$
\text { Estimated Mean }=\frac{30750000}{27}=1138888.89
$$

Mean

The following is "Student A" Score:

Course	Credits	Score
Business Math	3	60
English	2	80
Organization Behavior	3	100
Statistics	4	90
Operation Management	3	70
What is the average score of "Student A"?		

Mean

Consider these two sets of data:

Mean

 Value

Median

Median position $=\frac{n+1}{2}$ position in the ordered data

Median

Consider these two sets of data:

	150	152	154	155	155	
	155	155	155	155	157	Median?
	150	152	154	155	155	
B	155	155	155	155	187	
	15	Median?				

Median

Median

What is the median of this height data:

160157162170168174156173157

How about this data:

160157162170168174156173157150

Median

How about this data of business statistic's students monthly spending:

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

What is the MEDIAN?

Median

The MEDIAN group of monthly spending is Rp. 1.000.000 but less than Rp. 1.500.000

Estimated Median

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500 .000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

Estimated Median = Rp. 1.173.076,92

Estimated Median

$(n / 2)-c f_{b}$
 Estimated Median $=\mathrm{L}+$
 f_{m}

where:

- \mathbf{L} is the lower class boundary of the group containing the median
- \mathbf{n} is the total number of data
- $\mathbf{c f}_{\mathbf{b}}$ is the cumulative frequency of the groups before the median group
- $\mathbf{f}_{\mathbf{m}}$ is the frequency of the median group
- \mathbf{w} is the group width

Mode

What is the mode of this height data:

160157162170168174156173157

How about this data:

160157162170168174156173150

Mode

How about this data of business statistic's students monthly spending:

Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

What is the MODE?

Mode

The MODAL group of monthly spending is Rp. 1.000 .000 but less than Rp. 1.500.000

Mode

Without the raw data we don't really know...

Estimated Mode

Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500.000	13
Rp. 1.500.000 but less than Rp. 2.000.000	5

Estimated Mode $=$ Rp. 1.214.285,72

Estimated Mode

$$
\text { Estimated Mode }=L+\frac{f_{m}-f_{m-1}}{\left(f_{m}-f_{m-1}\right)+\left(f_{m}-f_{m+1}\right)} \times w
$$

where:

- L is the lower class boundary of the modal group
- f_{m-1} is the frequency of the group before the modal group
- f_{m} is the frequency of the modal group
- f_{m+1} is the frequency of the group after the modal group
- w is the group width

Central Tendency

EXERCISE

3.10

This is the data of the amount that sample of nine customers spent for lunch (\$) at a fast-food restaurant:
$4.20 \quad 5.03 \quad 5.86 \quad 6.45 \quad 7.38 \quad 7.548 .46 \quad 8.47 \quad 9.87$

Compute the mean and median.

3.12

The following data is the overall miles per gallon (MPG) of 2010 small SUVs:

$$
\begin{array}{lllllllll}
24 & 23 & 22 & 21 & 22 & 22 & 18 & 18 & 26 \\
26 & 26 & 19 & 19 & 19 & 21 & 21 & 21 & 21 \\
21 & 18 & 29 & 21 & 22 & 22 & 16 & 16 &
\end{array}
$$

Compute the median and mode.

GEOMETRIC MEAN

Compounding Data

Interest Rate

Growth Rate

Return Rate

Compounding Data

Suppose you have invested your savings in the stock market for five years. If your returns each year were $90 \%, 10 \%, 20 \%, 30 \%$ and -90%, what would your average return be during this period?

Compounding Data

If we use arithmetic mean in this case

The average return during this period $=\mathbf{1 2 \%}$

Compounding Data

Let say that you invest $\$ 100$ in year 0
How much your stocks worth in year 5?

Compounding Data

Geometric Mean

$$
\begin{aligned}
& G M=\sqrt[5]{1.9 \times 1.1 \times 1.2 \times 1.3 \times 0.1}-1 \\
& G M=-20.08 \% \\
& \begin{array}{c}
\text { Well, that's } \\
\text { pretty bad... }
\end{array}
\end{aligned}
$$

This is called geometric mean rate of return

Measure of Central Tendency For The Rate Of Change Of A Variable Over Time:
The Geometric Mean \& The Geometric Rate of Return

- Geometric mean
- Used to measure the rate of change of a variable over time

$$
\bar{X}_{G}=\left(X_{1} \times X_{2} \times \Lambda \times X_{n}\right)^{1 / n}
$$

- Geometric mean rate of return
- Measures the status of an investment over time

$$
\bar{R}_{G}=\left[\left(1+R_{1}\right) \times\left(1+R_{2}\right) \times \Lambda \times\left(1+R_{n}\right)\right]^{1 / n}-1
$$

- Where R_{i} is the rate of return in time period i

Geometric Mean

$$
G M=\sqrt[n]{\frac{\text { End of Period Value }}{\text { Beginning of period Value }}}-1
$$

Geometric Mean

Lets reconsider the previous problem. We knew that we invest $\$ 100$ in year 0 (zero). However, by the end of year 5 the value of the stock became $\$ 32.6$. Calculate the annual average return!

Geometric Mean

$$
G M=\sqrt[5]{\frac{32.6}{100}}-1
$$

- This value consistent with what we found earlier
$G M=-20.08 \%$

Population of West Java

Population of West Java:

- Year 2000: 35.729.537
- Year 2010: 43.053.732

Population growth rate per year?

3.22

In 2006-2009, the value of precious metals changed rapidly. The data in the following table represent the total rate of return (in percentage) for platinum, gold, an silver from 2006 through 2009:

Year	Platinum	Gold	Silver
2009	62.7	25.0	56.8
2008	-41.3	4.3	-26.9
2007	36.9	31.9	14.4
2006	15.9	23.2	46.1

3.22

a. Compute the geometric mean rate of return per year for platinum, gold, and silver from 2006 through 2009.
b. What conclusions can you reach concerning the geometric mean rates of return of the three precious metals?

VARIATION AND SHAPE

Variation and Shape

Range

Variance and Standard Deviation

Coefficient of Variation

Z Scores

Shape

Review on Central Tendency

Consider this data:

160157162170168174156173157150

What is the mean, median, and mode?

Range

Consider this data:

160157162170168174156173157150

What is the Range?

Range

Range $=X_{\text {max }}-X_{\text {min }}$

Measures of Variation:

Why The Range Can Be Misleading

- Ignores the way in which data are distributed

- Sensitive to outliers

$$
\begin{gathered}
\mathbf{1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 4 , \mathbf { 5 }} \\
\text { Range }=\mathbf{5 - 1}=\mathbf{4} \\
\mathbf{1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 4 , \mathbf { 1 2 0 }} \\
\text { Range }=\mathbf{1 2 0 - 1}=\mathbf{1 1 9}
\end{gathered}
$$

Variance and Standard Deviation

Deviation

Let's see this data again:

160157162170168174156173157150

What is the mean?

Mean = 162.7

Deviation

Variance and Standard Deviation

Data	Deviation	$(\mathrm{Dev})^{\wedge} 2$	
160	-2.7	7.29	
157	-5.7	32.49	
162	-0.7	0.49	
170	7.3	53.29	Sum of Squares
168	5.3	28.09	$T=594.1$
174	11.3	127.69	
156	-6.7	44.89	
173	10.3	106.09	
157	-5.7	32.49	
150	-12.7	161.29	

Variance and Standard Deviation

Sample size (n) $=10$

$$
\begin{aligned}
& \text { Variance }=\frac{594.1}{10-1}=66.01 \\
& \mathrm{SD}=\sqrt{66.01}=8.125
\end{aligned}
$$

Variance and Standard Deviation

- Sample

$$
S^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- Population

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{N}
$$

Measures of Variation:

 Comparing Standard Deviations

Standard Deviation

How about this data of business statistic's students monthly spending:

Monthly Spending	Frequency
less than Rp. 500.000	2
Rp. 500.000 but less than Rp. 1.000.000	7
Rp. 1.000.000 but less than Rp. 1.500 .000	13
Rp. 1.500 .000 but less than Rp. 2.000.000	5

What is the STANDARD DEVIATION?

Standard Deviation

How about this data of business statistic's

 students month| Mon | E.S.T.I.M.A.T.I.O.N | ency |
| :---: | :---: | :---: |
| less than Rp. 5 | | |
| Rp. 500.000 bu | | |
| Rp. 1.000 .000 but le | | |
| Rp. 1.500 .000 but l 1.500 .000 | 13 | |

What is the STANDARD DEVIATION?

Estimated Standard Deviation

Midpoint	Frequency	Dev^2	(Dev^2)*f
250000	2	790123456790.12	1580246913580.25
750000	7	151234567901.24	1058641975308.64
1250000	13	12345679012.35	160493827160.49
1750000	5	373456790123.46	1867283950617.28
Total	27		4666666666666.67

$$
\begin{gathered}
\text { Variance }=\frac{466666666666.67}{27}=172839506172.84 \\
S D=\sqrt{172839506172.84}=415739.71
\end{gathered}
$$

THE COEFFICIENT OF VARIATION

The Coefficient of Variation

The Coefficient of Variation

Let's see this height data again:

160157162170168174156173157150

What is the mean and standard deviation

Mean $=162.7$ and $S D=8.125$

The Coefficient of Variation

Students with height before is weighted as follows:
$\begin{array}{lllll}50 & 55 & 57 & 52 & 55\end{array}$
$69 \quad 60 \quad 65 \quad 71 \quad 70$
What is mean and standard deviation?

Mean $=60.4$ and $S D=7.8$

The Coefficient of Variation

	Height	Weight
Mean	162.7	60.4
SD	8.125	7.8

Which one has more variability?

Coefficient of Variation:
$\mathrm{CV}_{\text {Height }}=4.99 \%$
$\mathrm{CV}_{\text {Weight }}=12.92 \%$

The Coefficient of Variation

$$
C V=\left(\frac{S D}{\bar{X}}\right) \cdot 100 \%
$$

Locating Extreme Outliers: Z Score

Let's see this height data again:

160157162170168174156173157150

Locating Extreme Outliers: Z Score

Therefore, Z Score for 160 is?

$$
\mathrm{SD}=8.125
$$

Locating Extreme Outliers: Z Scores

Let's see this height data again:

160157162170168174156173157150

What is the Z Scores of 160, 174, 168 and $150 ?$
$Z_{160}=-0.33, Z_{174}=1.39, Z_{168}=0.65$, and
$Z_{150}=-0.56$

Locating Extreme Outliers: Z Score

$$
Z_{X}=\frac{X-\bar{X}}{S D}
$$

- A data value is considered an extreme outlier if its Z-score is less than -3.0 or greater than +3.0 .
- The larger the absolute value of the Z-score, the farther the data value is from the mean.

Shape

Let's see this height data again:

160157162170168174156173157150

Median = 161

Right-Skewed

$$
\text { Mean = } 162.7
$$

Shape

What if the height data is like this:

163168162170168174156173157150

Left-Skewed

Median $=165.5$

Shape

Describes how data are distributed

Right-Skewed Median < Mean

EXPLORING NUMERICAL DATA

Exploring Numerical Data

Quartiles

Quartiles

Let's consider this height data:
160157162170168174156
What is the Q_{1}, Q_{2} and Q_{3} ?
$\mathrm{Q}_{1}=157$
$\mathrm{Q}_{2}=162$ (Median)
$Q_{3}=170$

Quartiles

Let's then consider this height data:
160157162170168174156173150 What is the Q_{1}, Q_{2} and Q_{3} ?
$\mathrm{Q}_{1}=156.5$
$\mathrm{Q}_{2}=162$ (Median)
$\mathrm{Q}_{3}=171.5$

Quartiles

And this height data:
160157162170168174156173157150 What is the Q_{1}, Q_{2} and Q_{3} ?
$\mathrm{Q}_{1}=157$
$\mathrm{Q}_{2}=161$ (Median)
$Q_{3}=170$

Quartiles

Interquartile Range

Interquartile Range

What is the Interquatile range?
Interquartile Range =170-157=13

Interquartile Range

Interquarile Range $=Q_{3}-Q_{1}$

Five-Number Summary

$X_{\min } \quad Q_{1} \quad$ Median $Q_{3} \quad X_{\max }$

Five-Number Summary

Let's see again this height data:
160157162170168174156173157150 What is the Five-Number Summary?
$\begin{array}{lllll}150 & 157 & 161 & 170 & 174\end{array}$

Boxplot

Boxplot

Let's see again this height data:
160157162170168174156173157150

Construct the Boxplot?

Boxplot for the Height of Business Statistic's Student 2014

Distribution Shape and The Boxplot

Left-Skewed

$Q_{1} \quad Q_{2} Q_{3}$

Symmetric

$\mathrm{Q}_{1} \mathrm{Q}_{2} \mathrm{Q}_{3}$

Right-Skewed

Karl Pearson's Measure of Skewness

$$
S_{k}=\frac{3(162.7-161)}{8.125}=0.63
$$

Karl Pearson's Measure of Skewness

$$
S_{k}=\frac{3(\bar{X}-\text { Median })}{S}
$$

Bowley's Formula for Measuring Skewness

Bowley's Formula for Measuring Skewness

$$
S_{k}=\frac{\left(Q_{3}-Q_{2}\right)-\left(Q_{2}-Q_{1}\right)}{\left(Q_{3}-Q_{1}\right)}
$$

EXERCISE

3.10

This is the data of the amount that sample of nine customers spent for lunch (\$) at a fast-food restaurant:

$$
\begin{array}{lllllllll}
4.20 & 5.03 & 5.86 & 6.45 & 7.38 & 7.54 & 8.46 & 8.47 & 9.87
\end{array}
$$

a. Compute the mean and median.
b. Compute the variance, standard deviation, and range
c. Are the data skewed? If so, how?
d. Based on the results of (a) through (c), what conclusions can you reach concerning the amount that customers spent for lunch?

3.62

In New York State, savings banks are permitted to sell a form of life insurance called savings bank life insurance (SBLI). The approval process consists of underwriting, which includes a review of the application, a medical information bureau check, possible requests for additional medical information and medical exams, and a policy compilation stage, during which the policy pages are generated and sent to the bank for delivery. The ability to deliver approved policies to customers in a timely manner is critical to the profitability of this service to the bank. During a period of one month, a random sample of 14 approved policies was selected, and the following were the total processing times

3.62

7319166428283190605631562218
a. Compute the mean, median, first quartile, and third quartile.
b. Compute the range, interquartile range, variance, and standard deviation.
c. Are the data skewed? If so, how?
d. What would you tell a customer who enters the bank to purchase this type of insurance policy and asks how long the approval process takes?

3.22

In 2006-2009, the value of precious metals changed rapidly. The data in the following table represent the total rate of return (in percentage) for platinum, gold, an silver from 2006 through 2009:

Year	Platinum	Gold	Silver
2009	62.7	25.0	56.8
2008	-41.3	4.3	-26.9
2007	36.9	31.9	14.4
2006	15.9	23.2	46.1

3.22

a. Compute the geometric mean rate of return per year for platinum, gold, and silver from 2006 through 2009.
b. What conclusions can you reach concerning the geometric mean rates of return of the three precious metals?

3.66

The table contains data on the calories and total fat (in grams per serving) for a sample of 12 veggie burgers.

Calories	Fat
110	3.5
110	4.5
90	3.0
90	2.5
120	6.0
130	6.0
120	3.0
100	3.5
140	5.0
70	0.5
100	1.5
120	1.5

3.66

a. For each variable, compute the mean, median, first quartile, and third quartile.
b. For each variable, compute the range, variance, and standard deviation
c. Are the data skewed? If so, how?
d. Compute the coefficient of correlation between calories and total fat.
e. What conclusions can you reach concerning calories and total fat?

THANK YOU

