Teori Pengambilan Keputusan

Week 1 – Introduction and Class Management

Agenda

- Introduction : 30 minutes
- Short Movies : 20 minutes
- Discussion : 100 minutes

Lecturer

- Nama: Devilia Sari S.T., M.S.M.
- Email: <u>devilia@telkomuniversity.ac.id</u>
- Blog: <u>http://devilia.staff.telkomuniversity.ac.id</u>

Class Management

- DILARANG menggunakan LAPTOP, HP, atau PERALATAN ELEKTRONIK lainnya tanpa persetujuan dosen
- DILARANG MAKAN di dalam kelas
- Mahasiswa yang kehadirannya KURANG DARI 75% (tidak menghadiri lebih dari 3 kali perkuliahan) TIDAK diperkenankan untuk mengikuti UAS apapun alasannya
- SAKIT, IZIN maupun ALPA tetap akan mengurangi jatah absen, walaupun sudah menyertakan surat.

Grade Composition

- UTS : 30%
- UAS : 30%
- Tugas dan Kuis : 40%

Grading

Nilai Skor Matakuliah (NSM)	Nila Mata Kuliah (NMK)
80 < NSM	Α
70 < NSM ≤ 80	AB
65 < NSM ≤ 70	В
60 < NSM ≤ 65	BC
50 < NSM ≤ 60	С
$40 < NSM \le 50$	D
NSM ≤ 40	E

Reference

Buku Utama

 Nagraj Balakrishnan, Barry Render, Ralph M. Stair. 2013.
 Managerial Decision Modeling with Spreadsheets, 3rd edition. New Jersey: Prentice Hall

Buku Pendukung

- Barry Render, Ralph M. Stair, Michael E. Hanna, Trevor S. Hale. 2015. Quantitative Analysis for Management, 12th Edition. New Jersey: Prentice Hall
- Bernardus Y. Nugroho, Ferdinand D. Saragih, Umanto Eko. 2012.
 Metode Kuantitatif. Salemba Humanika

Weekly Schedule

- Week 1 Introduction and Class Management
- Week 2 Linear Programming (Formulation and Graphic Method)
- Week 3 Linear Programming (Simplex Method, Maximization)
- Week 4 Linear Programming (Simplex Method, Minimization & Non-standard)
- Week 5 Transportation Model (Initial Solution)
- Week 6 Transportation Model (Optimization)
- Week 7 Assignment Model

Midterm Exam

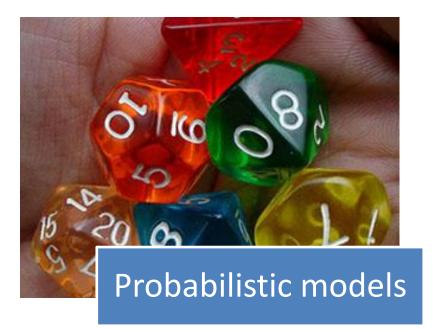
- Week 8 Decision Analysis: Decision Table
- Week 9 Decision Analysis: Decision Tree
- Week 10 Analytical Hierarchy Process (Part 1)
- Week 11 Analytical Hierarchy Process (Part 2)
- Week 12 Project Management (Part 1)
- Week 13 Project Management (Part 2)
- Week 14 Review and Quiz
- **Final Term Exam**

SHORT VIDEO

DISCUSSION

Introduction

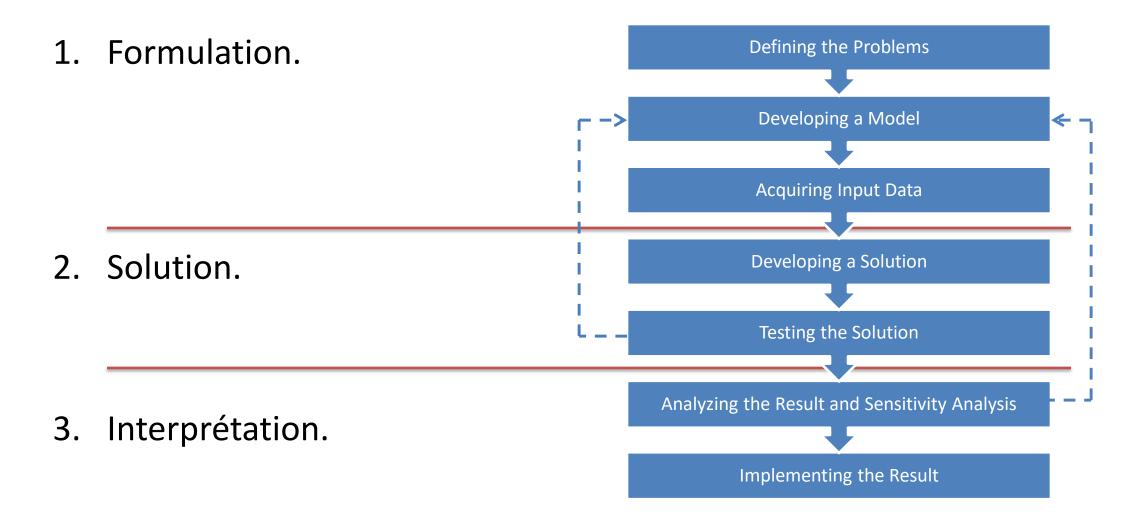
Decision models can be used to:


- Solve **complex** problems.
- Provide analytical framework for evaluating modern business problems.
- Provide techniques applicable in many areas -
 - Accounting, Economics, and Finance
 - Logistics, Management, and Marketing
 - Production, Operations, and Transportation
 - Decision models subject to limitations

Decision Making Theory

- A scientific approach to decision-making.
- Also referred to as
 - Quantitative analysis
 - Management science
 - Operations research

Decision Models


Deterministic Models

- Deterministic models assume
 - Complete certainty.
 - All information needed is available with fixed and known values.
- Most commonly used deterministic modeling technique is Linear Programming.

Probabilistic Models

- Probabilistic models are also called stochastic models.
- Probabilistic models
 - Assume some of data is not known with certainty.
 - Take into account information will be known after decision is made.

Steps Involved in Decision Modeling

Step 1: Formulation

- Defining the problem.
 - Develop clear and concise problem statement.
- Developing a model.
 - Select and develop a decision model.
 - Select appropriate problem variables.
 - Develop relevant mathematical relation for consideration and evaluation.

Step 1: Formulation (Continued)

- Acquiring input data.
 - Collect accurate data for use in model.
 - Possible data sources are:
 - Official company reports.
 - Accounting, operating, and financial information.
 - Views, and opinions from knowledgeable
 - individuals.

Step 2: Solution

- Developing a solution involves:
 - Manipulating model to arrive at best (optimal) solution.
 - Solution of set of mathematical expressions.
 - Alternative trial and error iterations.
 - Complete enumeration of all possibilities or utilization of an <u>algorithm</u>
 - Series of steps repeated until best solution is attained

Step 2: Solution (Continued)

- Testing a solution involves:
 - Prior to implementation of model solution, testing solution.
 - Testing of solution is accomplished by examining and evaluating:
 - Data utilized in model and
 - On <u>model</u> itself.

Step 3: Interpretation

Interpretation and What-if Analysis

- 1. Analyzing the results and sensitivity analysis
 - a. Vary data input values and examine differences in various optimal solutions.
 - b. Make changes in model parameters and examine differences in various optimal solutions.

Step 3: Interpretation (Continued)

- 2. Implementing the results.
 - a. Optimal solution must be implemented carefully.
 - b. Solution implementation usually requires making changes within the organization.
 - c. Recommendations often require changes in data, data handling, resource mixes, systems, procedures, policies, and personnel.
 - d. Managers and others may resist recommended solutions.

Keuntungan dari Pemodelan Matematika

- Model dapat merepresentasikan kenyataan secara akurat
- Model dapat membantu pengambil keputusan untuk memformulasikan masalah
- Model dapat memberi wawasan (insight) dan informasi
- Model dapat menghemat waktu dan uang dalam pengambilan keputusan dan pemecahan masalah
- Model bisa jadi merupakan satu-satunya cara untuk menyelesaikan masalah yang besar dan kompleks dalam waktu yang tersedia
- Model dapat digunakan untuk mengkomunikasikan masalah dan solusi ke pihak lain

Possible Problems in Developing Decision Models

- Defining Problem.
 - Conflicting Viewpoints.
 - Impact on Other Departments.
 - Beginning Assumptions.
 - Solution Outdated.
- Developing a Model.
 - Fitting Textbook Models.
 - Understanding Model.

Possible Problems in Developing Decision Models

- Acquiring Input Data.
 - Using Accounting Data.
 - Validity of Data.
- Developing a Solution.
 - Hard-to-Understand Mathematics.
 - Only One Answer is Limiting.
- Testing Solution.
- Analyzing Results

Implementation – Not Just The Final Step

- Decision models assist decision maker by providing scientific method, model, and process which is defensible and reliable.
- Overcome sole reliance upon intuition, hunches, and experience.
- A Swedish study found
 - 40% of projects suggested by decision analysts were ever implemented.
 - 70% of modeling projects initiated by users, and 98% of projects suggested by top managers, were <u>implemented</u>

Summary

Decision Models and Modeling

- Scientific approach to decision making in practice faced by managers.
- Decision models classified into two categories:
 - Deterministic models.
 - Probabilistic models.
- Approach includes three primary steps:
 - Formulation.
 - Solution.
 - Implementation.

Summary (Continued)

Decision Models and Modeling

- Potential problems to consider:
 - Conflicting viewpoints.
 - Model impacts on other departments.
 - Outdated solutions.
 - Understanding model.
 - Acquisition of good input data.
 - Hard-to-understand mathematics.
 - Solution testing.
 - Results analysis.

Summary (Continued)

Decision Models and Modeling

- Potential problems to consider:
 - Lack of commitment to approach.
 - Resistance to change.

See You Next Week

