Decision Making Theory

Week 3 Linear Programming Simplex Method - Maximize

Outlines

Linear Programing Model – Problem Formulation

Linear Programing Model – Graphic Solution

Linear Programing Model – Simplex Method (Maximize)

Linear Programing Model – Simplex Method (Minimize and Non-Standard)

Linear Programming Problems

STANDARD MAXIMIZATION PROBLEM

Flair Furniture Company

• Objective function:

Maximize profit (P) = \$70T + \$50C

• Constraints:

 $4T + 3C \le 240$ $2T + 1C \le 100$

T ≥ 0 C ≥ 0 Introduce slack variables into constraints to obtain equality (equations)

Slack Variables

All the inequality transformed into equality by adding slack variables to each of the inequality.

 $4T + 3C \le 240$ $2T + 1C \le 100$ $4T + 3C + S_1 = 240$ $2T + 1C + S_2 = 100$

Move the objective function to the left hand side of the equation

First Simplex Tableu

Simplex Tableu

4	3	1	0	0	240
2	1	0	1	0	100 <mark>(x2</mark>
4	3	1	0	0	240
4	2	0	2	0	200 -
0	1	1	-2	0	40

Basic Var.	Т	С	S ₁	S	S ₂	Ρ	F	RHS			
S ₁	4	3	1	(0	0		240			
S ₂	2	1	0		1	0		L00			
Р	-70	-50	0	(0	1		0			
	Basic	le T	•	С		S ₁	S ₂	Ρ	RHS		
	S ₁		0)	1		1	-2	0	40	
		Т	1		1/2	2	0	1/2	0	50	
Do the sa calculatio the rest of	ame on for row 3										

• P:

-70	-50	0	0	1	0
2	1	0	1	0	100 <mark>(x35</mark>
-70	-50	0	0	1	0
70	35	0	35	0	3500 +
0	-15	0	35	1	3500

Basic Var.	Т	С	S_1	S ₂	Ρ	RHS
S ₁	4	3	1	0	0	240
S ₂	2	1	0	1	0	100
Р	-70	-50	0	0	1	0

Basic Variable	Т	С	S ₁	S ₂	Ρ	RHS
S ₁	0	1	1	-2	0	40
Т	1	1/2	0	1/2	0	50
Р	0	-15	0	35	1	3500

Basic Var.	Т	С	S ₁	S ₂	Ρ	RHS	
S ₁	4	3	1	0	0	240	= Row 2 * (-2) + Row 1
S ₂	2	1	0	1	0	100	= Row 2 / 2
Р	-70	-50	0	0	1	0	= Row 2 * (35) + Row 3

Basic Variable	Т	С	S_1	S ₂	Ρ	RHS
S ₁	0	1	1	-2	0	40
Т	1	1/2	0	1/2	0	50
Р	0	-15	0	35	1	3500

Row P still contain negative value

Third Simplex Tableu

Third Simplex Tableu

Basic Var.	Т	С	S ₁	S ₂	Ρ	RHS	
S ₁	0	1	1	-2	0	40	= Row 1
Т	1	1/2	0	1/2	0	50	= Row 1 * (-1/2) + Row 2
Р	0	-15	0	35	1	3500	= Row 1 * 15 + Row 3

Basic Variable	Т	С	S ₁	S ₂	Ρ	RHS
С	0	1	1	-2	0	40
Т	1	0	-1/2	3/2	0	30
Р	0	0	15	5	1	4100

Third Simplex Tableu

Basic Var.	Т	С	S_1	S ₂	Ρ	RHS	
S ₁	0	1	1	-2	0	40	= Row 1
Т	1	1/2	0	1/2	0	50	= Row 1 * (-1/2) + Row 2
Р	0	-15	0	35	1	3500	= Row 1 * 15 + Row 3

Note that all	ariable	Т	С	S ₁	S ₂	Ρ	RHS			
the values in		0	1	1	-2	0	40			
row 3 now	F	1	0	-1/2	3/2	0	30			
negative		0	0	15	5	1	4100			
numbers	\int	THEREFORE, OPTIMAL!!								

EXERCISE

M7-20

Solve the following LP problem graphically. Then set up a simplex tableau and solve the problem using the simplex method. Indicate the corner points generate at each iteration by the simplex method on your graph.

Maximize profit = $\$3X_1 + \$5X_2$ Subject to $X_2 \le 6$ $3X_1 + 2X_2 \le 18$ $X_1, X_2 \ge 0$

M7-24

- Solve the following problem by the simplex method. What condition exists that prevents you from reaching an optimal solution?
- Maximize profit = $6X_1 + 3X_2$ Subject to $2X_1 - 2X_2 \le 2$ $-X_1 + X_2 \le 1$ $X_1, X_2 \ge 0$

THANK YOU