Decision Making Theory

Week 4
Linear Programming
Simplex Method - Minimize

Outlines

Linear Programing Model - Problem Formulation

Linear Programing Model - Graphic Solution

Linear Programing Model - Simplex Method (Maximize)

Linear Programing Model - Simplex Method (Minimize and Non-Standard)

Linear Programming Problems

Standard Maximization

Objective:
Maximize

Constraints: ALL with \leq

Standard simplex

Standard Minimization

Objective:
 Minimize

Constraints: All with \geq

Dual

Non-
Standard

Objective:
 Max or Min

Constraints: Mixed, can be \leq, \geq or $=$

Two Phase

STANDARD MINIMIZATION PROBLEM

Holiday Meal Turkey Ranch

Minimize cost $=2 X_{1}+3 X_{2}$
subject to $5 X_{1}+10 X_{2} \geq 90$

$$
\begin{aligned}
4 X_{1}+3 X_{2} & \geq 48 \\
0.5 X_{1} & \geq 1.5 \\
X_{1}, X_{2} & \geq 0
\end{aligned}
$$

The Dual

Minimize cost $=2 \mathrm{X}_{1}+3 \mathrm{X}_{2}$
subject to
$5 X_{1}+10 X_{2} \geq 90$
$4 X_{1}+3 X_{2} \geq 48$
$0.5 X_{1} \quad \geq 1.5$

$$
X_{1}, X_{2} \geq 0
$$

$$
A=\left[\begin{array}{cc|c}
5 & 10 & 90 \\
4 & 3 & 48 \\
0.5 & 0 & 1.5 \\
\hline 2 & 3 & 0
\end{array}\right]
$$

$$
A^{\top}=\left[\begin{array}{ccc|c}
5 & 4 & 0.5 & 2 \\
10 & 3 & 0 & 3 \\
\hline 90 & 48 & 1.5 & 0
\end{array}\right]
$$

The Dual

$$
A^{\top}=\left[\begin{array}{ccc|c}
5 & 4 & 0.5 & 2 \\
10 & 3 & 0 & 3 \\
\hline 90 & 48 & 1.5 & 0
\end{array}\right]
$$

Maximize
$Z=90 Y_{1}+48 Y_{2}+1.5 Y_{3}$
subject to

$$
\begin{aligned}
5 Y_{1}+4 Y_{2}+0.5 Y_{3} & \leq 2 \\
10 Y_{1}+3 Y_{2} & \leq 3
\end{aligned}
$$

$$
Y_{1}, Y_{2}, Y_{3} \geq 0
$$

Continue with the simplex method to solve standard maximization problems!!

Slack Variables

When using the dual, slack variables are variables in the former problem formulation. Therefore, slack variables in this problem are X_{1} and X_{2}.

Constraints:

$$
\begin{array}{ll}
5 Y_{1}+4 Y_{2}+0.5 Y_{3} \leq 2 \\
10 \mathrm{Y}_{1}+3 \mathrm{Y}_{2} & \leq 3
\end{array} \quad \begin{gathered}
5 Y_{1}+4 Y_{2}+0.5 Y_{3}+X_{1} \leq 2 \\
10 Y_{1}+3 Y_{2} \\
\\
Z=90 \mathrm{Y}_{1}+48 \mathrm{Y}_{2}+1.5 \mathrm{Y}_{3} \leq 3
\end{gathered} \quad-90 \mathrm{Y}_{1}-48 \mathrm{Y}_{2}-1.5 \mathrm{Y}_{3}+\mathrm{Z}=0
$$

First Simplex Tableu

$$
\begin{aligned}
& 5 Y_{1}+4 Y_{2}+0.5 Y_{3}+X_{1} \leq 2 \rightarrow \text { row } 1 \\
& 10 Y_{1}+3 Y_{2}+X_{2} \leq 3 \rightarrow \text { row } 2 \\
& -90 \mathrm{Y}_{1}-48 \mathrm{Y}_{2}-1.5 \mathrm{Y}_{3}+\mathrm{Z}=0 \rightarrow \text { row } 3
\end{aligned}
$$

Simplex Tableu

Second Simplex Tableu

Basic Var.	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	\mathbf{Z}	$\mathbf{R H S}$
X_{1}	5	4	0.5	1	0	0	2 R Row $2 *(-5 / 10)+$ Row 1
X_{2}	10	3	0	0	1	0	$3=\operatorname{Row} 2 / 10$
Z	-90	-48	-1.5	0	0	1	$0=\operatorname{Row} 2 *(90 / 10)+$ Row 3

Basic Var.	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	\mathbf{Z}	$\mathbf{R H S}$
X_{1}	0	2.5	0.5	1	-1	0	0.5
Y_{1}	1	0.3	0	0	0.1	0	0.3
Z	0	-21	-1.5	0	9	1	27

Row P still contain negative value

Second Simplex Tableu

Pivot Number
Change the pivot number to 1 and other number in the same column to 0

Basic Var.	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	\mathbf{Z}	$\mathbf{R H S}$	
X_{1}	0	2.5	0.5	1	-1	0	0.5	$0.5 / 2.5=0.2$ Y_{1}
\mathbf{Z}	1	0.3	0	0	0.1	0	0.3	$0.3 / 0.3=1$

Third Simplex Tableu

Optimal Solution

Because this solution is the solution of the dual, use row Z and column X_{1}, X_{2} as the optimal solution.

EXERCISE

M7-22

Solve the following LP problem first graphically and then by the simplex algorithm:
Minimize cost $=4 \mathrm{X}_{1}+5 \mathrm{X}_{2}$
subject to $X_{1}+2 X_{2} \geq 80$

$$
\begin{aligned}
3 x_{1}+x_{2} & \geq 75 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Objective function: minimize $w=3 x_{1}+3 x_{2}$ constraints:
$2 x_{1}+x_{2} \geq 4$
$x_{1}+2 x_{1} \geq 4$
$x_{1}, x_{2} \geq 0$

NON-STANDARD LINEAR

 PROGRAMMING PROBLEM
The Muddy River Chemical Company

Minimize cost $=\$ 5 X_{1}+\$ 6 X_{2}$
subject to $X_{1}+X_{2}=1000 \mathrm{lb}$

$$
\begin{aligned}
\mathrm{X}_{1} & \leq 300 \mathrm{lb} \\
\mathrm{X}_{2} & \geq 150 \mathrm{lb} \\
\mathrm{X}_{1}, \mathrm{X}_{2} & \geq 0
\end{aligned}
$$

Surplus Variable

Greater-than-or-equal-to (\geq) constraints involve the subtraction of a surplus variable rather than the addition of a slack variable.

Surplus is sometimes simply called negative slack

$$
x_{2} \geq 150 \Longleftrightarrow x_{2}-S_{2}=150
$$

Artificial Variable

Artificial variables are usually added to greater-than-or-equal-to (\geq) constraints to avoid violating the non-negativity constraint.

When a constraint is already an equality ($=$), artificial variable is also used to provide an automatic initial solution

Artificial Variable

- Equality

$$
X_{1}+X_{2}=1000
$$

- Greater than or equal
$X_{2} \geq 150$
- Equality

$$
X_{1}+X_{2}+A_{1}=1000
$$

- Greater than or equal

$$
X_{2}-S_{2}+A_{2}=150
$$

Before the final simplex solution has been reached, all artificial variables must be gone from the solution mix

Two Phase Method

Phase I

- Objective: Minimize all artificial variables
- Objective: LP original objective

Conversions

Constraints:
$X_{1}+X_{2}=1000$
$\begin{aligned} X_{1} & \leq 300 \\ X_{2} & \geq 150\end{aligned}$

Objective function:
Minimize $C=5 X_{1}+6 X_{2}$

$$
\begin{aligned}
X_{1}+X_{2} & +A_{1}=1000 \\
X_{1} & +S_{1}=300 \\
X_{2} & -S_{2}+A_{2}=150
\end{aligned}
$$

Phase I:
Minimize $Z=A_{1}+A_{2}$
Phase II:
Minimize $C=5 X_{1}+6 X_{2}$

Converting The Objective Function

In minimization problem, minimizing the cost objective is the same as maximizing the negative of the cost objective function

Minimize $C=5 X_{1}+6 X_{2}$ and $Z=A_{1}+A_{2}$

Maximize $(-C)=-5 X_{1}-6 X_{2}$ and $(-Z)=-A_{1}-A_{2}$

Conversions

Constraints:

$$
\begin{aligned}
X_{1}+X_{2} & =1000 \\
X_{1} & \leq 300 \\
X_{2} & \geq 150
\end{aligned}
$$

$$
\begin{gathered}
X_{1}+X_{2}+A_{1}=1000 \\
X_{1}+S_{1}=300 \\
X_{2}-S_{2}+A_{2}=150
\end{gathered}
$$

Objective function:
Phase I: $(-Z)=-A_{1}-A_{2}$ Phase II:
$(-C)=-5 X_{1}-6 X_{2}$

Phase I: $\mathrm{A}_{1}+\mathrm{A}_{2}-\mathrm{Z}=0$ Phase II:
$5 X_{1}+6 X_{2}-C=0$

Simplex Tableu

$$
\begin{aligned}
& x_{1}+x_{2}+A_{1}=1000 \rightarrow \text { row } 1 \\
& x_{1}+S_{1} \leq 300 \rightarrow \text { row } 2
\end{aligned}
$$

$$
\mathrm{X}_{2}-\mathrm{S}_{2}+\mathrm{A}_{2} \geq 150 \rightarrow \text { row } 3
$$

| Basic Var. | $\mathbf{X}_{\mathbf{1}}$ | $\mathbf{X}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | \mathbf{Z} | \mathbf{C} | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{1} | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1000 |
| $\mathrm{~S}_{1}$ | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 300 |
| $\mathrm{~A}_{2}$ | 0 | 1 | 0 | -1 | 0 | 1 | 0 | 0 | 150 |
| Z | 0 | 0 | 0 | 0 | 1 | 1 | (-1) | 0 | 0 |
| C | 5 | 6 | 0 | 0 | 0 | 0 | 0 | (-1) | 0 |

$$
\mathrm{A}_{1}+\mathrm{A}_{2}-\mathrm{Z}=0 \rightarrow \text { row } 4
$$

$$
5 X_{1}+6 X_{2}-C=0 \rightarrow \text { row } 5
$$

Simplex Tableu

A1 and A2 are supposed to be basic variable. However, in this tableu the condition is not satisfy. \rightarrow infeasible

| Basic Var. | $\mathbf{X}_{\mathbf{1}}$ | $\mathbf{X}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | \mathbf{Z} | \mathbf{C} | $\mathbf{R H S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{1} | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1000 |
| $\mathrm{~S}_{1}$ | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 300 |
| $\mathrm{~A}_{2}$ | 0 | 1 | 0 | -1 | 0 | 1 | 0 | 0 | 150 |
| Z | 0 | 0 | 0 | 0 | 1 | 1 | (-1) | 0 | 0 |
| C | 5 | 6 | 0 | 0 | 0 | 0 | 0 | (-1) | 0 |

row 1 * $(-1)+$ row 3 * $(-1)+$ row 4

These values need to be converted to zero (0)

Phase I: First Simplex Tableu

Basic Variable condition is satisfied

Basic Var.	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	\mathbf{Z}	\mathbf{C}	$\mathbf{R H S}$
A_{1}	1	1	0	0	1	0	0	0	1000
$\mathrm{~S}_{1}$	1	0	1	0	0	0	0	0	300
$\mathrm{~A}_{2}$	0	1	0	-1	0	1	0	0	150
Z	-1	-2	0	1	0	0	(-1)	0	-1150
C	5	6	0	0	0	0	0	(-1)	0

Continue with simplex procedure to eliminate the negative values in row Z first (Phase I)

Phase I: Second Simplex Tableu

Change the pivot number to 1 and
Pivot Number other number in the same column to 0

Basic Var.	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	\mathbf{Z}	\mathbf{C}	$\mathbf{R H S}$
A_{1}	1	1	0	0	1	0	$1000 / 1=1000$	1000	
$\mathrm{~S}_{1}$	1	0	1	0	0	0	$300 / 0=\sim$	300	
$\mathrm{~A}_{2}$	0	1	0	-1	0	1	$150 / 1=150$	150	
\mathbf{Z}	-1	-2	0	1	0	0	(-1)	0	-1150
\mathbf{C}	5	6	0	0	0	0	0	(-1)	0

Phase I: Second Simplex Tableu

Basic Var.	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	\mathbf{Z}
\mathbf{Z}	\mathbf{C}	RHS					
A_{1}	1	1	0	0	1	$=$ row 3	* $(-1)+$ row 1
1000							
$\mathrm{~S}_{1}$	1	0	1	0	$0=$ row 2	300	
$\mathrm{~A}_{2}$	0	1	0	-1	0	$=$ row 3	150
Z	-1	-2	0	1	0	$=$ row 3 * 2 + row 4	1150
C	5	6	0	0	0	$=$ row 3 $*(-6)+$ row 5	0

Basic Var.	X_{1}	X_{2}	S_{1}	S_{2}	A_{1}	A_{2}	Z	C	RHS
A_{1}	1	0	0	1	1	-1	0	0	850
S_{1}	1	0	1	0	0	0	0	0	300
X_{2}	0	1	0	-1	0	1	0	0	150
Z	-1	0	0	-1	0	2	(-1)	0	-850
C	5	0	0		0	-6	0	(-1)	-900

Phase I: Third Simplex Tableu

Change the pivot number to 1 and
Pivot Number other number in the same column to 0

Basic Var.	X_{1}		S_{1}	s_{2}	A_{1}	A_{2}	Z	C	RHS
A_{1}	1	0	0	$1)$	1	-1 850/1 = 850			850
S_{1}	1	0	1	0	0	0	$300 / \mathrm{p}=\sim$		300
X_{2}	0	1	0	-1	0	1			150
Z	-1	0	0	-1	0	2	(-1)	0	-850
C	5			6	0	-6	0	(-1)	-900
	negat e solu	ther ente mix				Smallest result of the ratio, therefore variable A_{1} leave the solution mix			

Phase I: Third Simplex Tableu

Basic Var.	X_{1}	X_{2}	S_{1}	S_{2}	A_{1}	A_{2}	z	C	RHS
A_{1}	1	0	0	1	$1 /=$ row 1				850
S_{1}	1	0	1	0	0 = row 2				300
X_{2}	0	1	0	-1	0 = row $1+$ row 3				150
Z	-1	0	0	-1	0 = row $1+$ row 4				-850
C	5	0	0	6	$0=$ row $1 *(-6)+$ row 5				900

| Basic Var. | $\mathbf{X}_{\mathbf{1}}$ | $\mathbf{X}_{\mathbf{2}}$ | $\mathbf{S}_{\mathbf{1}}$ | $\mathbf{S}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | \mathbf{Z} | \mathbf{C} | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S_{2} | 1 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 850 |
| $\mathrm{~S}_{1}$ | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 300 |
| X_{2} | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1000 |
| Z | 0 | 0 | 0 | 0 | 1 | 1 | (-1) | 0 | 0 |
| C | 1 | 0 | 0 | 0 | | 0 | 0 | (-1) | -6000 |

Phase II: First Simplex Tableu

Pivot Number				Change the pivot number to 1 and other number in the same column to 0			
Basic Var.	x_{1}	X_{2}	S_{1}	S_{2}	C	RHS	
S_{2}	1	0	0	1	0	850	$850 / 1=850$
S_{1}	(1)	0	1	0	0	300	$300 / 1=300$
X_{2}	1	1	0	0	0	1000	$1000 / \hat{1}=1000$
C	-1	0	0	0	(-1)	-6000	
Most negative, therefore variable X_{1} enter the solution mix						Smallest result of the ratio, therefore variable S_{1} leave the solution mix	

Third Simplex Tableu

Optimal Solution

Remember that the objective function was converted. Thus:

$$
\operatorname{Max}(-C)=-5700 \rightarrow \operatorname{Min} C=5700
$$

Basic Var.	X_{1}	X_{2}	S_{1}	S_{2}	c	RHS	$\left\{\begin{array}{r} x_{1}=300 \\ \mu x_{2}=700 \end{array}\right.$
S_{2}	0	0	-1	1	0	550	
X_{1}	1	0	1	0	0	300	
X_{2}	0	1	-1	0	0	700	
C	0	0	1	0	(-1)	-5700	

EXERCISE

M7-27

A Pharmaceutical firm is about to begin production of three new drugs. An objective function designed to minimize ingredients costs and three production constraints are as follows:
Minimize cost $=50 \mathrm{X}_{1}+10 \mathrm{X}_{2}+75 \mathrm{X}_{3}$
subject to $X_{1}-X_{2}=1.000$

$$
2 X_{2}+2 X_{3}=2.000
$$

$$
X_{1} \quad \leq 1.500
$$

$$
X_{1}, X_{2}, X_{3} \geq 0
$$

SPECIAL CASE IN SIMPLEX METHOD

1. Infeasibility

No feasible solution is possible if an artificial variable remains in the solution mix

Basic Var.	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	\mathbf{Z}	\mathbf{C}	$\mathbf{R H S}$
X_{1}	1	0	-2	3	-1	0	0	0	200
X_{2}	0	1	1	2	-2	0	0	0	100
$\mathrm{~A}_{2}$	0	0	0	-1	-1	1	0	0	20
Z	0	0	2	3	0	0	(-1)	0	-850
C	0	0	0	-31	21	0	0	(-1)	-900

2. Unbounded Solutions

Unboundedness describes linear programs that do not have finite solutions

Basic Var.	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	\mathbf{P}	RHS
X_{2}	-1	1	2	0	0	30
$\mathrm{~S}_{2}$	-2	0	-1	1	0	10
P	-15	0	18	0	1	270

Since both pivot column numbers are negative, an unbounded solution is indicated

3. Degeneracy

Degeneracy develops when three constraints pass through a single point

Basic Var.	X_{1}	X_{2}	X_{3}	S_{1}	S_{2}	S_{3}	C	RHS
X_{2}	0.25	1	1	$\begin{aligned} 10 / 0.25 & =40 \\ 20 / 4 & =5 \\ 10 / 2 & =5 \end{aligned}$			0	10
S_{2}	4	0	0.33				0	20
S_{3}	2	0	2				0	10
C	-3	0	6		0			80

Degeneracy could lead to a situation known as cycling, in which the simplex algorithm alternates back and forth between the same non-optimal solutions

4. More Than One Optimal Solution

If the value of P (objective function's row) is equal to 0 for a variable that is not in the solution mix, more than one optimal solution exists.

Basic Var.	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	\mathbf{P}	RHS
X_{2}	1.5	1	1	0	0	6
$\mathrm{~S}_{2}$	1	0	0.5	1	0	3
P	0	0	2	0	1	12

HOMEWORK

1

John's Locomotive Works manufactures a model locomotive. It comes in two versions--a standard (X1), and a deluxe (X2). The standard version generates $\$ 250$ per locomotive for the standard version, and $\$ 350$ per locomotive for the deluxe version. One constraint on John's production is labor hours. He only has 40 hours per week for assembly. The standard version requires 250 minutes each, while the deluxe requires 350 minutes.

1

John's milling machine is also a limitation. There are only 20 hours a week available for the milling machine. The standard unit requires 60 minutes, while the deluxe requires 120. Formulate as a linear programming problem, and solve using either the graphical or corner points solution method.

2

The Queen City Nursery manufactures bags of potting soil from compost and topsoil. Each cubic foot of compost costs 12 cents and contains 4 pounds of sand, 3 pounds of clay, and 5 pounds of humus. Each cubic foot of topsoil costs 20 cents and contains 3 pounds of sand, 6 pounds of clay, and 12 pounds of humus. Each bag of potting soil must contain at least 12 pounds of sand, 12 pounds of clay, and 10 pounds of humus.

2

Plot the constraints and identify the feasible region. Graphically or with corner points find the best combination of compost and topsoil that meets the stated conditions at the lowest cost per bag. Identify the lowest cost possible

3

What combination of x and y will yield the optimum for this problem?
Maximize $\$ 3 x+\$ 15 y$,
subject to
(1) $2 x+4 y \leq 12$ and
(2) $5 x+2 y \leq 10$.

4

What combination of x_{1} and x_{2} will yield the optimum for this problem?
Minimize $C=2 x_{1}+x_{2}$
subject to
$5 x_{1}+x_{2} \geq 9$,
$2 x_{1}+2 x_{2} \leq 10$, and
$\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$

THANK YOU

