Decision Making Theory

Week 5 –

Transportation Models

Outline

- ☑ Transportation Modeling
- ☑ Developing an Initial Solution
 - ☑ The Northwest-Corner Rule
 - ☑ The Intuitive Lowest-Cost Method
 - ✓ Vogel's Approximation Method
- ☑ Optimization method
 - ☑ The Stepping-Stone Method
 - ☑ MODI (Modified Distribution) Method
- ☑ Special Issues in Modeling
 - ☑ Demand Not Equal to Supply
 - ☑ Degeneracy

Learning Objectives

When you complete this module you should be able to:

- Develop an initial solution to a transportation models with the northwest-corner, intuitive lowest-cost methods and Vogel's Approximation Method
- 2. Solve a problem with the stepping-stone and MODI (Modified Distribution method
- 3. Balance a transportation problem
- 4. Solve a problem with degeneracy

Transportation Modeling

- An interactive procedure that finds the least costly means of moving products from a series of sources to a series of destinations
- ✓ Can be used to help resolve distribution and location decisions

Transportation Modeling

- ☑ A special class of linear programming
- ✓ Need to know
 - 1. The origin points and the capacity or supply per period at each
 - 2. The destination points and the demand per period at each
 - 3. The cost of shipping one unit from each origin to each destination

Transportation Problem

To			
From	Albuquerque	Boston	Cleveland
Des Moines	\$5	\$4	\$3
Evansville	\$8	\$4	\$3
Fort Lauderdale	\$9	\$7	\$ 5

Transportation Problem

Transportation Matrix

Initial solution

- ☑ Start in the upper left-hand cell (or northwest corner) of the table and allocate units to shipping routes as follows:
 - 1. Exhaust the supply (factory capacity) of each row before moving down to the next row
 - 2. Exhaust the (warehouse) requirements of each column before moving to the next column
 - 3. Check to ensure that all supplies and demands are met

- Assign 100 tubs from Des Moines to Albuquerque (exhausting Des Moines's supply)
- 2. Assign 200 tubs from Evansville to Albuquerque (exhausting Albuquerque's demand)
- 3. Assign 100 tubs from Evansville to Boston (exhausting Evansville's supply)
- 4. Assign 100 tubs from Fort Lauderdale to Boston (exhausting Boston's demand)
- 5. Assign 200 tubs from Fort Lauderdale to Cleveland (exhausting Cleveland's demand and Fort Lauderdale's supply)

From	(A) Albuquero	que	(B) Bosto		(C) Clevela	ınd	Factory capacity
(D) Des Moines	100	\$5		\$4		\$3	100
(E) Evansville	200	\$8	100	\$4		\$3	300
(F) Fort Lauderdale		\$9	(100)	\$7	200	\$5	300
Warehouse requirement	300		200		200		700
					\		

Means that the firm is shipping 100 bathtubs from Fort Lauderdale to Boston

Computed Shipping Cost

Rou	ıte			
From	То	Tubs Shipped	Cost per Unit	Total Cost
D	Α	100	\$5	\$ 500
Ε	Α	200	8	1,600
Ε	В	100	4	400
F	В	100	7	700
F	С	200	5	\$1,000
			То	tal: \$4,200

This is a feasible solution but not necessarily the lowest cost alternative

- 1. Identify the cell with the lowest cost
- 2. Allocate as many units as possible to that cell without exceeding supply or demand; then cross out the row or column (or both) that is exhausted by this assignment
- 3. Find the cell with the lowest cost from the remaining cells
- 4. Repeat steps 2 and 3 until all units have been allocated

First, \$3 is the lowest cost cell so ship 100 units from Des Moines to Cleveland and cross off the first row as Des Moines is satisfied

From	(A) Albuquerque	(B) Boston	(C) Cleveland	Factory capacity
(D) Des Moines	\$ 5	Ç1	100	100
(E) Evansville	\$8	\$4	100 \$3	300
(F) Fort Lauderdale	\$9	\$7	\$5	300
Warehouse requirement	300	200	200	700

Second, \$3 is again the lowest cost cell so ship 100 units from Evansville to Cleveland and cross off column C as Cleveland is satisfied

Third, \$4 is the lowest cost cell so ship 200 units from Evansville to Boston and cross off column B and row E as Evansville and Boston are satisfied

Finally, ship 300 units from Albuquerque to Fort Lauderdale as this is the only remaining cell to complete the allocations

From	(A) Albuquero	lue	(B) Bostor	า	(C) Clevelar	nd	Factory capacity
(D) Des Moines		\$5	L	¢ 1	100	¢ ,	100
(E) Evansville	-	\$0	200	¢ 1	100	¢ ,	300
(F) Fort Lauderdale	300	\$9		\$ 7		\$5	300
Warehouse requirement	300		200		200		700

Total Cost =
$$$3(100) + $3(100) + $4(200) + $9(300)$$

= $$4,100$

Total Cost =
$$$3(100) + $3(100) + $4(200) + $9(300)$$

= $$4,100$

- 1. For each row and column of the transportation table, find the difference between the two lowest unit shipping costs.
- 2. Identify the row or column with the greatest opportunity cost, or difference.
- 3. Assign as many units as possible to the lowest cost square in the row or column selected.
- 4. Eliminate any row or column that has just been completely satisfied by the assignment just made.
- 5. Recompute the cost differences for the transportation table.

From	(A) Albuquerque	(B) Boston	(C) Cleveland	Factory capacity
(D) Des Moines	\$5	\$4	\$3	100
(E) Evansville	\$8	\$4	\$3	300
(F) Fort Lauderdale	\$9	\$7	\$5	300
Warehouse requirement	300	200	200	700

4-4=0

8-5=*3*

3-3=0

4-3=1

4-3=1

7-5=2

From	(A) Albuquerque	(B) Boston	(C) Cleveland	Factory capacity	
(D) Des Moines	100 \$5	X \$4	X \$3	100	
(E) Evansville	\$8	\$4	\$3	300	<i>4-3</i> =1
(F) Fort Lauderdale	\$9	\$7	\$5	300	7-5=2
Warehouse requirement	300	200	200	700	

9-8=1

7-4=3

5-3=*2*

From	(A) Albuquero	que	(B) Bosto		(C) Clevela	ınd	Factory capacity
(D) Des Moines	100	\$5	X	\$4	X	\$3	100
(E) Evansville	X	\$8	200	\$4	100	\$3	300
(F) Fort Lauderdale		\$9	X	\$7		\$5	300
Warehouse requirement	300		200		200		700

9-8=1

5-3=*2*

8-3=*5*

9-5=4

From	(A) Albuquero	que	(B) Bosto		(C) Clevela	nd	Factory capacity
(D) Des Moines	100	\$5	X	\$4	X	\$3	100
(E) Evansville	X	\$8	200	\$4	100	\$3	300
(F) Fort Lauderdale	200	\$9	X	\$7	100	\$5	300
Warehouse requirement	300		200		200		700

Total Cost = \$5(100) + \$4(200) + \$3(100) + \$9(200) + \$5(100)= \$3,900

exercise

9-16 (1)

Perusahaan kayu Saussy Lumber mengapalkan lantai kayu pinus ke tiga gudang suplai dari pabrik-pabriknya yang terletak di Pineville, Oak Ridge, dan Mapletown. Tentukan jadwal pengiriman terbaik untuk data yang tabel yang diberikan. Gunakan northwest corner rule dan the stepping-stone method.

9-16 (2)

Ke Dari	Supply House 1	Supply House 2	Supply House 3	Mill Capacity (Tons)
Pineville	\$3	\$3	\$2	
				25
Oak Ridge	4	2	3	
				40
Mapletown	3	2	3	
				30
Supply House Demand (Tons)	30	30	35	95

9-17 (1)

Perusahaan kereta api Krampf Lines memiliki spesialisasi dalam pengiriman batu bara. Pada hari Jumat, 13 April, Krampf memiliki sejumlah gerbong kosong di beberapa kota berikut ini:

TOWN	SUPPLY OF CARS
Morgantown	35
Youngstown	60
Pittsburgh	25

9-17 (2)

Pada hari Senin, 16 April, beberapa kota lainnya akan memerlukan sejumlah gerbong sebagai berikut:

TOWN	DEMAND FOR CARS
Coal Valley	30
Coaltown	45
Coal Junction	25
Coalsburg	20

9-17 (3)

Dengan menggunakan bagan jalur rel kereta api dari kota ke kota, bagian pengiriman membangun tabel jarak untuk masing-masing kota. Hasilnya dapat dilihat pada tabel berikut. Minimisasi total jarak untuk memindahkan gerbong ke lokasi baru dan tentukan pengiriman gerbong terbaik.

ТО	COAL		COAL	
FROM	VALLEY	COALTOWN	JUNCTION	COALSBURG
MORGANTOWN	50	30	60	70
YOUNGSTOWN	20	80	10	90
PITTSBURGH	100	40	80	30

Thank you