Decision Making Theory

Week 7 Assignment Method

Assignment Method

- A special class of linear programming models that assign tasks or jobs to resources
- ☑ Only one job (or worker) is assigned to one machine (or project)

MINIMIZATION

Example

Build a table of costs or time associated with particular assignments

		Typesetter			
Job	А	В	С		
R-34	\$11	\$14	\$6		
S-66	\$8	\$10	\$11		
T-50	\$9	\$12	\$7		

Typesetter Job	А	В	С
R-34	\$11	\$14	\$6
S-66	\$8	\$10	\$11
T-50	\$9	\$12	\$7

Step 1a - Rows

Step 1b - Columns

Typesetter Job	А	В	С
R-34	\$ 5	\$8	\$0
S-66	\$ O	\$2	\$3
T-50	\$2	\$ 5	\$0

Typesetter Job	А	В	С
R-34	\$ 5	\$6	\$ O
S-66	\$ O	\$ O	\$3
T-50	\$2	\$3	\$ O

• Check whether we can assign a typesetter to a certain job. See the cell with value "0".

Typesetter Job	А	В	С	
R-34	\$ 5	\$6	\$0	
S-66	\$_0	\$0	\$3	
T-50	\$ 2	\$3	>	
		(Вс	annot assigned to S-66
A assig	ned		sinc	e it has been assigned to
to job s	S-66		A	Therefore, additional
			prod	cedure need to be done.

Step 2 and 3

Step 2 - Lines

Typesetter Job	A	В	С	
R-34	\$5	\$6	\$	D
S-66 -	50	\$ 0	Ś	
T-50	\$ 2	\$ 3	\$)

Because only two lines are needed to cover all the zeros, the solution is not optimal The smallest uncovered number is 2 so this is subtracted from all other uncovered numbers and added to numbers at the intersection of lines

Step 3 - Subtraction

Typesetter Job	А	В	С
R-34	\$3	\$4	\$ O
S-66	\$ O	\$ O	\$5
T-50	\$ O	\$ 1	\$0

Step 2 - Lines

Because three lines are needed, the solution is optimal and assignments can be made

Start by assigning R-34 to worker C as this is the only possible assignment for worker C.

Job T-50 must go to worker A as worker C is already assigned. This leaves S-66 for worker B.

Step 4 - Assignments

Optimal

Step 4 - Assignments

From the original cost table Minimum cost = \$6 + \$10 + \$9 = \$25

MAXIMIZATION

Example

Build a table of efficiencies of British in Patrol Sectors

	SECTOR								
SHIP	Α	A B C D							
1	20	60	50	55					
2	60	30	80	75					
3	80	(100)	90	80					
4	65	80	75	70					

Identify the highest rating score

Example

Compute opportunity costs of British Ships

Subtract each rating from the maximum rating score

	SECTOR				
SHIP	Α	В	С	D	
1	80	40	50	45	
2	40	70	20	25	
3	20	0	10	20	
4	35	20	25	30	
=100-20					

	SECTOR				
SHIP	Α	В	С	D	
1	80	40	50	45	
2	40	70	20	25	
3	20	0	10	20	
4	35	20	25	30	

Step 1a - Rows

Step 1b - Columns

	SECTOR							
SHIP	Α	A B C D						
1	40	0	10	5				
2	20	50	0	5				
3	20	0	10	20				
4	15	0	5	10				

	SECTOR				
SHIP	Α	В	С	D	
1	25	0	10	0	
2	5	50	0	0	
3	5	0	10	15	
4	0	0	5	5	

• Check whether we can assign a ship to a certain sector. See the cell with value "0".

Optimal

Step 4 - Assignments

From the original cost table Maximum efficiencies = 65 + 100 + 80 + 55 = 300

EXERCISE

9-37

In a job shop operation, four jobs may be performed on any of four machines. The hours required for each job on each machine are presented in the following table. The plant supervisor would like to assign jobs so that total time is minimized. Find the best solution.

JOB	MACHINE				
	W	Х	Y	Z	
A12	10	14	16	13	
A15	12	13	15	12	
B2	9	12	12	11	
B9	14	16	18	16	

9-41(1)

Roscoe Davis, chairman of a college's business department, has decided to apply a new method in assigning professors to courses next semester. As a criterion for judging who should teach each course, Professor Davis reviews the past two years' teaching evaluations (which were filled out by students). Since each of the four professors taught each of the four courses at one time or another during the two-year period, Davis is able to record a course rating for each instructor.

9-41(2)

These ratings are shown in the table. Find the best assignment of professors to courses to maximize the overall teaching rating.

	COURSE						
PROFESSOR	STATISTICS	MANAGEMENT	FINANCE	ECONOMICS			
Anderson	90	65	95	40			
Sweeney	70	60	80	75			
Williams	85	40	80	60			
McKinney	55	80	65	55			

9-48 (1)

The XYZ Corporation is expanding its market to include Texas. Each salesperson is assigned to potential distributors in one of five different areas. It is anticipated that the salesperson will spend about three to four weeks in each area. A statewide marketing campaign will begin once product has been delivered to the the distributors.

9-48 (2)

The five sales people who will be assigned to these areas (one person for each area) have rated the areas on the desirability of the assignment as shown in the following table. The scale is 1 (least desirable) to 5 (most desirable). Which assignments should be made if the total of the ratings is to be maximized?

9-48 (3)

	AUSTIN/		EL PASO/		CORPUS CHRISTI/ RIO
	SAN ANTONIO	DALLAS/ FT. WORTH	TEXAS	GALVESTON	VALLEY
Erica	5	3	2	3	4
Louis	3	4	4	2	2
Maria	4	5	4	3	3
Paul	2	4	3	4	3
Orlando	4	5	3	5	4

TAKE HOME TEST

Take Home Test

- Buka companion website untuk buku: Quantitative Analysis for Management, 11th ed. (Link lihat di blog)
- Buka Internet Homework Problem chapter 7 dan chapter 9.
- Chapter 7: Pilih dan selesaikan 1 soal dengan menggunakan metode grafik dan 1 soal dengan metode simpleks.
- Chapter 9: Pilih dan selesaikan 1 soal model transportasi (initial solution dan optimization) dan 1 soal model penugasan (assigment model).

THANK YOU