Teori Pengambilan Keputusan

Week 12 - Project Management

Project Management

Program Evaluation and Review Technique (PERT)

Critical Path Method (CPM)

PERT and CPM

- Network techniques
- Developed in 1950's
- CPM by DuPont for chemical plants (1957)
- PERT by Booz, Allen \& Hamilton with the U.S.

Navy, for Polaris missile (1958)

- Consider precedence relationships and interdependencies
- Each uses a different estimate of activity times

PERT/CPM

- Define the project and all of its significant activities or tasks.
- Develop the relationships among the activities. Decide which activities must precede others.
- Draw the network connecting all of the activities.
- Assign time and/or cost estimates to each activity.
- Compute the longest time path through the network; this is called the critical path.
- Use the network to help plan, schedule, monitor, and control the project.

Questions PERT \& CPM Can Answer

1. When will the entire project be completed?
2. What are the critical activities or tasks in the project?
3. Which are the noncritical activities?
4. What is the probability the project will be completed by a specific date?

Questions PERT \& CPM Can Answer

5. Is the project on schedule, behind schedule, or ahead of schedule?
6. Is the money spent equal to, less than, or greater than the budget?
7. Are there enough resources available to finish the project on time?
8. If the project must be finished in a shorter time, what is the way to accomplish this at least cost?

A Comparison of AON and AOA Network Conventions

Activity on Node (AON)

Activity Meaning

Activity on Arrow (AOA)

(a)

A comes before B, which comes before C

A and B must both be completed before C can start

B and C cannot begin until A is completed

A Comparison of AON and AOA Network Conventions

Activity on Node (AON)

Activity Meaning

Activity on Arrow (AOA)

(d)

(e)

C and D cannot begin until both A and B are completed

C cannot begin until both A and B are completed; D cannot begin until B is completed. A dummy activity is introduced in AOA

A Comparison of AON and AOA Network Conventions

Activity on Node (AON)
 Activity
 Meaning
 Activity on Arrow (AOA)

B and C cannot begin until A is completed. D cannot begin until both B and C are completed. A dummy activity is again introduced in AOA.

AON Example

Milwaukee Paper Manufacturing's Activities and Predecessors

Activity	Description	Immediate Predecessors
A	Build internal components	-
B	Modify roof and floor	-
C	Construct collection stack	A
D	Pour concrete and install frame	A, B
E	Build high-temperature burner	C
F	Install pollution control system	C
G	Install air pollution device	D, E
H	Inspect and test	F, G

AON Network for Milwaukee Paper

AON Network for Milwaukee Paper

AON Network for Milwaukee Paper

Figure 3.8

Determining the Project Schedule

Perform a Critical Path Analysis
∇ The critical path is the longest path through the network
∇ The critical path is the shortest time in which the project can be completed
∇ Any delay in critical path activities delays the project
चCritical path activities have no slack time

Determining the Project Schedule

Perform a Critical Path Analysis

Activity	Description	Time (weeks)
A	Build internal components	2
B	Modify roof and floor	3
C	Construct collection stack	2
D	Pour concrete and install frame	4
E	Build high-temperature burner	4
F	Install pollution control system	3
G	Install air pollution device	5
H	Inspect and test	2
	Total Time (weeks)	25

Determining the Project Schedule

Perform a Critical Path Analysis

- Earliest start (ES) = earliest time at which an activity can start, assuming all predecessors have been completed
- Earliest finish (EF) = earliest time at which an activity can be finished
- Latest start (LS) = latest time at which an activity can start so as to not delay the completion time of the entire project
- Latest finish (LF) = latest time by which an activity has to be finished so as to not delay the completion time of the entire project

Determining the Project Schedule

Perform a Critical Path Analysis

Forward Pass

Begin at starting event and work forward

Earliest Start Time Rule:

च If an activity has only a single immediate predecessor, its ES equals the EF of the predecessor
V If an activity has multiple immediate predecessors, its ES is the maximum of all the EF values of its predecessors

ES $=$ Max \{EF of all immediate predecessors $\}$

Forward Pass

Begin at starting event and work forward

 Earliest Finish Time Rule:\square The earliest finish time (EF) of an activity is the sum of its earliest start time (ES) and its activity time

$$
\mathrm{EF}=\mathrm{ES}+\text { Activity time }
$$

ES/EF Network for Milwaukee Paper

Figure 3.11

Backward Pass

Begin with the last event and work backwards

Latest Finish Time Rule:
\square If an activity is an immediate predecessor for just a single activity, its LF equals the LS of the activity that immediately follows it
च If an activity is an immediate predecessor to more than one activity, its LF is the minimum of all LS values of all activities that immediately follow it
$\mathrm{LF}=\mathrm{Min}\{\mathrm{LS}$ of all immediate following activities $\}$

Backward Pass

Begin with the last event and work backwards

Latest Start Time Rule:
\square The latest start time (LS) of an activity is the difference of its latest finish time (LF) and its activity time

$$
\mathrm{LS}=\mathrm{LF}-\text { Activity time }
$$

LS/LF Times for

 Milwaukee Paper

LS/LF Times for Milwaukee Paper

LS/LF Times for Milwaukee Paper

Computing Slack Time

After computing the ES, EF, LS, and LF times for all activities, compute the slack or free time for each activity
\square Slack is the length of time an activity can be delayed without delaying the entire project

$$
\text { Slack }=\mathrm{LS}-\mathrm{ES} \quad \text { or } \quad \text { Slack }=\mathrm{LF}-\mathrm{EF}
$$

Computing Slack Time

	Earliest Start ES	Earliest Finish EF	Latest Start LS	Latest Finish LF	Slack LS - ES	On Critical Path
A	0	2	0	2	0	Yes
B	0	3	1	4	1	No
C	2	4	2	4	0	Yes
D	3	7	4	8	1	No
E	4	8	4	8	0	Yes
F	4	7	10	13	6	No
G	8	13	8	13	0	Yes
H	13	15	13	15	0	Yes

Critical Path for Milwaukee Paper

ES - EF Gantt Chart for Milwaukee Paper

LS - LF Gantt Chart for Milwaukee Paper

Variability in Activity Times

- CPM assumes we know a fixed time estimate for each activity and there is no variability in activity times
- PERT uses a probability distribution for activity times to allow for variability

Variability in Activity Times

- Three time estimates are required
- Optimistic time (a)
- if everything goes according to plan
- Pessimistic time (b)
- assuming very unfavorable conditions
- Most likely time (m)
- most realistic estimate

Variability in Activity Times

- Estimate follows beta distribution

Expected time:

$$
t=(a+4 m+b) / 6
$$

Variance of times:

$$
v=[(b-a) / 6]^{2}
$$

Variability in Activity Times

- Estimate follows beta distribution

Computing Variance

Activity	Optimistic a	Most Likely m	Pessimistic b	Expected $\mathrm{t}=(\mathrm{ame}+4 \mathrm{~m}+\mathrm{b}) / 6$	Variance $[(\mathrm{b}-\mathrm{a}) / 6]^{2}$
A	1	2	3	2	.11
B	2	3	4	3	.11
C	1	2	3	2	.11
D	2	4	6	4	.44
E	1	4	7	4	1.00
F	1	2	9	3	1.78
G	3	4	11	5	1.78
H	1	2	3	2	.11

Trade-Offs And Project Crashing

It is not uncommon to face the following situations:

- The project is behind schedule
- The completion time has been moved forward

Shortening the duration of the project is called project crashing

Factors to Consider When Crashing A
 Project

- The amount by which an activity is crashed is, in fact, permissible
- Taken together, the shortened activity durations will enable us to finish the project by the due date
- The total cost of crashing is as small as possible

Steps in Project Crashing

1. Compute the crash cost per time period. If crash costs are linear over time:
$\begin{aligned} & \text { Crash cost } \\ & \text { per period }\end{aligned}=\frac{(\text { Crash cost }- \text { Normal cost })}{(\text { Normal time }- \text { Crash time })}$
2. Using current activity times, find the critical path and identify the critical activities

Steps in Project Crashing

- If there is only one critical path, then select the activity on this critical path that (a) can still be crashed, and (b) has the smallest crash cost per period. If there is more than one critical path, then select one activity from each critical path such that (a) each selected activity can still be crashed, and (b) the total crash cost of all selected activities is the smallest. Note that the same activity may be common to more than one critical path.

Steps in Project Crashing

- Update all activity times. If the desired due date has been reached, stop. If not, return to Step 2.

Crashing The Project

	Time (Wks)		Cost (\$)		Crash Cost	Critical Activity
Normal	Crash	Normal	Crash	Per Wk (\$)		
Path?						

Crash and Normal Times and Costs for Activity B

Critical Path And Slack Times For Milwaukee Paper

Advantages of PERT/CPM

- Especially useful when scheduling and controlling large projects
- Straightforward concept and not mathematically complex
- Graphical networks help highlight relationships among project activities
- Critical path and slack time analyses help pinpoint activities that need to be closely watched

Advantages of PERT/CPM

- Project documentation and graphics point out who is responsible for various activities
- Applicable to a wide variety of projects
- Useful in monitoring not only schedules but costs as well

Limitations of PERT/CPM

- Project activities have to be clearly defined, independent, and stable in their relationships
- Precedence relationships must be specified and networked together
- Time estimates tend to be subjective and are subject to fudging by managers
- There is an inherent danger of too much emphasis being placed on the longest, or critical, path

EXERCISE

1

Berikut aktivitas pada sebuah proyek. Waktu yang tercantum adalah dalam minggu.

Aktivitas	Aktivitas Pendahulu	Waktu
A	--	8
B	--	3
C	A	7
D	A, B	3
E	C	4
F	D	6

1

a. Gambarkan diagram jaringannya.
b. Hitunglah ES, EF, LS, LF, dan Slack untuk masing-masing aktivitas.
c. Berapakah waktu penyelesaian proyek tersebut?

2

Tom Schriber, direktur SDM pada parusahaan Management Resources, Inc., sedang mendesain program yang dapat digunakan konsumennya untuk mencari pekerjaan. Aktivitas-aktivitasnya termasuk menulis resumés, membuat surat lamaran, membaut janji untuk bertemu dengan perusahaan yang dituju, melakukan penelitian mengenai perusahaan dan industry dan seterusnya. Beberapa informasi mengenai aktivitas-aktivitas tersebut dapat dilihat pada tabel dibawah ini:

2

AKTIVITAS	HARI			AKTIVITAS
	a	m	b	PENDAHULU
A	8	10	12	-
B	6	7	9	-
C	3	3	4	-
D	10	20	30	A
E	6	7	8	C
F	9	10	11	B, D, E
G	6	7	10	B, D, E
H	14	15	16	F
I	10	11	13	F
J	6	7	8	G, H
K	4	7	8	I, J
L	1	2	4	G, H

2

a. Gambarkan diagram jaringannya.
b. Hitunglah ES, EF, LS, LF, dan Slack untuk masing-masing aktivitas.
c. Berapakah waktu penyelesaian proyek tersebut?

3

Berikut aktivitas pada sebuah proyek. Waktu yang tercantum adalah dalam minggu.

Aktivitas	Aktivitas Pendahulu	Waktu/Durasi
A	--	9
B	A	2
C	A	12
D	A	5
E	B	6
F	B F F	8
G	D	3
H	H	2
I	G, I	8
J	E, J	6
K	2	

3

a. Buatlah diagram jaringannya.
b. Aktivitas manakah yang membentuk jalur kritis (critical path)?
c. Berapakah slack pada aktivitas A dan F?
d. Berapakah durasi dari jalur kritisnya?

THANK YOU

